- Two sample mean t tests compare the responses to two treatments or characteristics of two populations.
- There is a separate sample from each treatment or population.
- These tests are quite different than the matched pairs t – test.

 The null and alternate hypotheses would be:

$$H_0: \mu_1 = \mu_2$$
 or $H_0: \mu_1 = \mu_2$ or $H_0: \mu_1 = \mu_2$
 $H_a: \mu_1 > \mu_2$ or $H_a: \mu_1 < \mu_2$ $H_a: \mu_1 \neq \mu_2$

- The assumptions for a two-sample mean t – test are:
 - We have two independent SRSs, from two distinct populations and we measure the same variable for both samples.
 - Both populations are normally distributed with unknown means and standard deviations. (Or if each given sample size is greater than or equal to 30.)

• Two-sample mean
$$t$$
 – test statistic:
$$t = \frac{(\overline{x_1} - \overline{x_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

 The degrees of freedom is equal to the smaller of n_1 – 1 or n_2 – 1.

8.3 Comparing Two Means Example:

The president of an all-female school stated in an interview that she was sure that the students at her school studied more, on average, than the students at a neighboring all-male school. The president of the allmale school responded that he thought the mean study time for each student body was undoubtedly about the same and suggested that a study be undertaken to clear up the controversy. Accordingly, independent samples were taken at the two schools with the following results:

School	Sample Size		Standard deviation (hrs)
All Female (1)	65. n	18.56 X	4.35 S ₁
All Male (2)	75 N ₂	17.95 🔀 💂	4.87 S ₂

Determine, at the 2% level of significance, if there is a significant difference between the mean studying times of the students in the two schools based on these samples.

$$H_0: \mathcal{U}_1 = \mathcal{U}_2$$
 $t = \frac{(18.56 - 17.95) - 0}{\sqrt{\frac{4.35^2}{65} + \frac{4.87^2}{72}}} = .782^{\circ}$
 $H_0: \mathcal{U}_1 \neq \mathcal{U}_2$

-2,386 6/2,386

.01

Example:

$$\alpha = .02$$

2. Determine, at the 2% level of significance, if there is a significant difference between the mean studying times of the students in the two schools based on these samples.

	Remedial (1)	Non-remedial 2	
Sample size	100 n ₁	40 Nz	df =
Mean Exam Grade	83.0 X	76.5 K z	
Std Dev for Exam	2.76 S ₁	4.11 S ₂	

Test, at the 3% level, whether the remediation helped the students to be inv T or 4t (.98,39)

more successful.

39