Section 7.4 - Confidence Intervals for the Variance and Standard Deviation of a Normal Population

Proposition

Let X_1, X_2, \ldots, X_n be a random sample from a distribution with mean μ and variance σ^2 . Then the estimator

$$\hat{\sigma}^2 = S^2 = \frac{\sum (X_i - \overline{X})^2}{n-1}$$
 is unbiased for estimating σ^2 .

Definition

The **standard error** of an estimator $\hat{\theta}$ is its standard deviation $\sigma_{\hat{\theta}} = \sqrt{V(\hat{\theta})}$. It is the magnitude of a typical or representative deviation between an estimate and the value of θ .

Suppose that instead of estimating the population mean μ , we wish to estimate the population *variance* σ^2 .

Let $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ be the sample variance from a random sample of size n. taken from a $N(\mu, \sigma^2)$ distribution. Then a $(1-\alpha)$ confidence interval for σ^2 is

$$\left[\frac{(n-1)S^2}{\chi^2_{\alpha/2}},\frac{(n-1)S^2}{\chi^2_{1-\alpha/2}}\right]$$

where χ^2 has n-1 degrees of freedom.

Note: If an interval for standard deviation is desired, take the square root.

Example: A sample of n=16 completion times for a particular task for a lab technician led to a sample mean of 4.3 minutes and a sample standard deviation of 0.6 minutes. Determine a 95% confidence interval for the standard deviation of her completion time.