Section 5.3 - Statistics and Their Distributions

Population mean and standard deviation are often impossible to calculate.

Def: A *statistic* is any quantity whose value can be calculated from <u>sample data</u>.

Prior to obtaining the data, there is uncertainty as to what value of any particular statistic will result. Therefore, a statistic is a random variable and will be denoted by an uppercase letter. A lowercase letter represents the calculated or observed value of the statistic.

Def: The rv's $X_1, X_2, X_3, ..., X_n$ are said to form a (simple) random sample of size n if

- 1. The X_i 's are independent random variables.
- 2. Every X_i has the same probability distribution.

Population mean: 11 \overline{X} sample mean before same taken -RV \overline{x} particular sample mean Ex: A certain brand of MP3 player comes in three configurations: 2GB (\$80), 4GB (\$100), and 8GB (\$120). Let X = the cost of a single randomly selected purchase of the MP3 player. Suppose X has pmf given by the table below:

$$\begin{cases} x & 80 & 100 & 120 \\ p(x) & 0.2 & 0.3 & 0.5 \end{cases}$$

Suppose, on a particular day, 2 of these MP3 players are sold. Let

 X_1 = selling price of first MP3 player

 X_2 = selling price of second MP3 player

independent

Determine the possible values for $\overline{X} = \frac{X_1 + X_2}{2}$

						2
	χı	Px	χ_2	Px ₂	X	Pπ
	80	·ż	80	. 2	80	(.2)(.2) = .04
	80	, 2	100	. 3	90	(,2)(,3)=,06}
ı	00	.3	80	, 2	90	(.3)(.2) = .06
ī	D	, 3	00	, 3	100	-3 (·3) = ·09 Ž
	80	, 2	120	.5	190	1.10
1	20	.5	80	. 2	100	. 10
	[50	. 3	120	.5	lid	.15 7 3
l	20	١5.	الم	. 3	110	.15
	20	.5	120	•5	120	_ 25

Give the pmf of $\overline{X} = \frac{X_1 + X_2}{2}$

$$\frac{X}{P_{\overline{X}}}$$
 .04 .12 .29 .30 .25

Compute the expected value and variance of $\overline{X} = \frac{X_1 + X_2}{2}$

$$E[\overline{X}] = 80(.04) + 90(.12) + 100(.24) + 110(.3) + 120(.25)$$

$$= 106$$

$$V[X] = E[X^2] - (E[X])^2 \approx 122$$