Section 4.4 - The Exponential and Gamma Distributions

The Exponential Distribution

X is said to have an *exponential distribution* with parameter λ ($\lambda > 0$) if the pdf of X is

X is said to have an *exponential distribution* with parameter
$$\underline{\lambda}$$
 ($\lambda > 0$) if the pdf of X is
$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

$$P(X \le \Delta) = F(\Delta) = \int_0^{\Delta} \lambda e^{-\lambda x} dx = -e^{-\lambda x} dx = -e^{-\lambda$$

Ex: Suppose the time a child spends waiting at for the bus as a school bus stop is exponentially distributed with mean 3 minutes. Determine the probability that the child must wait at <u>least 5 minutes</u> on the bus on a given morning.

$$E[X] = 3 = \frac{1}{3} \Rightarrow \lambda = \frac{1}{3}$$

$$P(X \ge 5) = 1 - P(X \le 5) = 1 - F(5)$$

$$= 1 - \int_{0}^{5} \frac{1}{3} e^{-x/3} dx$$

$$= 1 - \left[-e^{-x/3} \right]_{0}^{5}$$

$$= \left[-\left[e^{-5/3} + + 1 \right] \approx .189$$

$$1 - F(5) = 1 - \left(1 - e^{-5/3} \right)$$

The Gamma Distribution

We say that X has a Gamma Distribution with parameters $\alpha > 0$ and $\beta > 0$ if X has p.d.f.

$$f(y) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} y^{\alpha-1} e^{-y/\beta}, \ 0 \le y < \infty$$

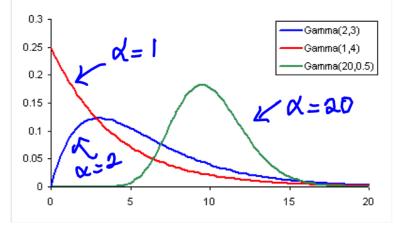
Note: Here
$$\Gamma(\alpha) = \int_0^\infty w^{\alpha - 1} e^{-w} dw$$
 (The Gamma Function)

Interpretation of the Gamma Distribution:

If X has gamma distribution with parameters $\alpha > 0$ and $\beta > 0$, then X represents the amount of time it takes to obtain α successes, where

$$\beta = \frac{1}{\lambda}$$
, (λ = expected number of occurrences is one time interval).

Some graphs of possible pdf's for the Gamma Distribution:



Special Cases of the Gamma Distribution:

- 1. If $\alpha = 1, \beta = \frac{1}{\lambda}$ then X is said to have Exponential Distribution with parameter λ .
- 2. If $\alpha = \frac{r}{2}$, $\beta = 2$ then X is said to have Chi-square Distribution with parameter r. In

this case
$$f(y) = \frac{1}{\Gamma(r/2)2^{r/2}} y^{(r/2)-1} e^{-y/2}, \quad 0 \le y < \infty$$
.

Ex: Suppose X is a continuous rv with a gamma distribution with $\alpha = 3$. Find $P(4 \le X \le 6)$

$$\begin{array}{l}
- P(X \le 6) - P(X \le 4) \\
- 938 - .762 = [.]76
\end{array}$$

10	V							
xa	1	2	3	4	5	6	,	
1	.632	.264	.080	.019	.004	.001	.000	
2	.865	.594	.323	.143	.053	.017	.005	
3	.950	.801	.577	.353	.185	.084	.034	
4	.982	.908	.762	.567	.371	.215	.111	
5	.993	.960	.875	.735	.560	.384	.238	
6	.998	.983	.938	.849	.715	.554	.394	
7	.999	.993	.970	.918	.827	.699	.550	
8	1.000	.997	.986	.958	.900	.809	.687	
9		.999	.994	.979	.945	.884	.793	
10		1.000	.997	.990	.971	.933	.870	
7000		1.000	.999	.995	.985	.962	.921	
11 12			1.000	.998	.992	.980	.954	
13				.999	.996	.989	.974	
14				1.000	.998	.994	.986	
15					.999	.997	.992	