Test for Slope of Regression Lines

9.2 Test for Slope of Regression Lines

- We can also test hypotheses about the value of the slope, β.
- The most common hypothesis is that the slope is zero.
- In other words, that is there is no true linear relationship between x and y.
- This means that y does not change at all when x changes.

9.2 Test for Slope of Regression Lines

 When testing on whether or not a linear relationship exists, the null and alternate hypotheses are:

$$H_0$$
: $\beta = 0$ and H_a : $\beta \neq 0$

 If we wish to know if there is a positive linear relationship we will use:

$$H_0$$
: $\beta = 0$ and H_a : $\beta > 0$

And for a negative linear relationship:

$$H_0$$
: $\beta = 0$ and H_a : $\beta < 0$

• The test statistic is the *t*-statistic: $t = \frac{b}{SE_{k}}$

9.2 Test for Slope of Regression Lines Example:

1. How well do golfers' scores on the first round of a two-round tournament predict their scores for a second round? Twelve golfers recorded scores for each round of a two-round tournament. Test how well golfers' scores on the first round of a two-round tournament predict their scores for a second round. $\alpha = 0.05$

Golfer	1	2	3	4	5	6	7	8	9	10	11	12
Round 1	89	90	87	95	86	81	102	105	83	88	91	79
Round 2	94	85	89	89	81	76	107	89	87	91	88	80

$$\hat{y} = 24.332 + .6877 \times H_{6}: \beta = 0 \qquad df = 12-2 \\ = 10$$

$$SE_{b} = .23 \qquad H_{a}: \beta \neq 0$$

$$L = \frac{b}{SE_{b}} = \frac{.6877}{.23} = 2.99 \qquad \text{pvalue} = 2p(t > 2.99) = .013b \\ < \alpha$$

$$Reject H_{6}$$

9.2 Test for Slope of Regression Lines Example:

2. The following partial computer output is from data relating the number of pages contained in a magazine to the number of full-page ads for a two-year period (n = 24). d = 22

Predictor	Coef	StDev	t	p > t	
Constant	26.240	8.439	?	?	
→Pages	0.25986	0.08615	?	?	
S = 11.64	R-Sq = 2	9.3% R-	Sq (adj) = 26.	0%

Determine if there is strong evidence to conclude that a large number of pages in the two magazines will also have a large number of ads.

Ho:
$$\beta = 0$$

Ha: $\beta > 0$
 $t = \frac{b}{SE_b} = \frac{.2598b}{.08615} = 3.01637$
pvalue: $p(t > 3.01637) = .00317 < .05$