Confidence Intervals for Regression Lines

9.1 CI for Regression Lines

- Recall that a regression line is a line that describes the relationship between the explanatory variable x and the response variable y.
- The least squares regression line formula is $\hat{y} = a + bx$ where a is the y-intercept and b is the slope.
- The slope of a regression line can help determine if a relationship exists between two variables. When the slope of a regression line is zero, no relationship exists.

9.1 CI for Regression Lines

- The assumptions for regression inference are:
 - 1. If we hold *x* fixed and take many observations on *y*, the normal pattern will eventually appear in a stem-plot or histogram. Repeated values of *y* are independent of each other.
 - 2. The mean response of y has a straight-line relationship with x: $\mu_y = \alpha + \beta x$ (The slope, β , and y-intercept, α , are unknown parameters.)
 - 3. The standard deviation, σ , of y is the same for all values of x and is unknown.

9.1 CI for Regression Lines

 Confidence Interval for β is found with the formula:

$$b \pm t^*(SE_b)$$

• Where t^* has n - 2 degrees of freedom,

$$s = \sqrt{\frac{1}{n-2}} \sum (y - \hat{y})^2 \text{ and } SE_b = \frac{S}{\sqrt{\sum (x - \overline{x})^2}}.$$

9.1 CI for Regression Lines Example:

1. How well do golfers' scores on the first round of a two-round tournament predict their scores for a second round? Twelve golfers recorded scores for each round of a two-round tournament. Give the least squares regression link for the data, report on *r* and *r*-squared and compute the 90% confidence interval for the slope of the regression line.

Golfer	1	2	3	4	5	6	7	8	9	10	11	12	N=1
Round 1 💃	89	90	87	95	86	81	102	105	83	88	91	79	df=
Round 2 4	94	85	89	89	81	76	107	89	87	91	88	80	

$$y=a+bx$$

 $a=26.33201581$
 $b=.6877470356$
 $r^2=.472063054$
 $r=.6870684493$
 $t^* = \ln v T (.9 + (-9)/3) 10) = 1.812$
 $t^* = \ln v T (.9 + (-9)/3) 10) = 1.812$
 $t^* = \ln v T (.9 + (-9)/3) 10) = 1.812$
 $t^* = \ln v T (.9 + (-9)/3) 10) = 1.812$
 $t^* = \ln v T (.9 + (-9)/3) 10) = 1.812$

9.1 CI for Regression Lines Example:

2. Below is the computer output for the appraised value (in thousands of dollars) and number of rooms for 73 houses in South Springs, Texas.

df = 71

Predictor	Coef	StDev T	s=29.05
→ Constant	a 74.800	19.04 3.93	R-sq=43.8%
Rooms	b 19.718	2.631 7.49	R-sq(adj)=43.0%

Using this information, find the equation of the LSRL and calculate the 95% confidence interval of the slope of the regression line for all houses in South Springs.

$$\hat{y} = 74.8 + 19.718 \%$$
 $b \pm t^* SE_b$
 $t^* = 100 T (.95 + \frac{(1-.95)}{2},71) = 1.99$
 $t^* = 2.631$