Introduction to Statistics Chi-Square Test for Homogeneity

- The Chi-Square Test for Homogeneity is a test used to determine whether frequency counts are distributed identically across different populations. (In other words, whether equal proportions exist in a series of populations).
- The null and alternate hypothesis are:
 - $-H_0$: The distributions are the same
 - $-H_a$: The distributions are not the same

- The conditions to use χ² test for homogeneity are:
 - Each sample is an SRS from its respective population.
 - 2. Each population is at least 10 times as large as its respective sample.
 - The variable we are interested in is categorical.
 - 4. The expected frequency count for each value is at least 5.

Chi-Square Test for Homogeneity

- We conduct this test much like the Chisquare test of independence.
- The formula to find the expected count is:

expected count =
$$\frac{\text{row total} \times \text{column total}}{n}$$

- Where n is the grand total of all values.
- The test statistic is: $\chi^2 = \sum_{allcells} \frac{(O_{ij} E_{ij})^2}{E_{ij}}$
- The *p*-value: $P(\chi^2_k > \chi^2)$, where χ^2_k represents a Chi-square distribution with df = (r-1)(c-1) degrees of freedom.

Chi-Square Test for Homogeneity Ho! distributions for to shows same for Example:

Suppose a study was conducted to determine the t.v.

viewing habits of men and women. A random sample of 250 adults (100 men and 150 women) was taken and their

results are: df = (2-1)(3-1) = 2

065.	The Blacklist	American Idol	NCIS	Total	row totals
Men	40	15	45	100	
Women	50	62	38	150	
Total COL	90	77	83	250	n=250

Test at the 5% significance level to determine if the men's t.v. preferences are different from the women's.

Men $\frac{100\times90}{250} = 36$ $\frac{100\times17}{25} = 30.8$ $\frac{82\times100}{250} = 33.2$ $\chi^2 = 25.47$ Women $\frac{190\times90}{250} = 54$ $\frac{190\times71}{250} = 46.8$

Chi-Square Test for Homogeneity

$$\chi^2 = 24.57$$