- Test 1 begins next Saturday. That is 3/02.

- Practice Test 1 is now available. This is a Quiz grade!

- I will post a review sheet under 2/17 on the Calendar.

- I will add 5% of your best Practice Test 1 score to Test 1, if you score ≥70% on PT1 and do so before taking Test 1.

- We will review during lecture next Wednesday!
When you email me, you **MUST** include the following information:

- MATH 2433 Section 12242 and a searchable description in the **Subject Line**

- Your NAME and ID# in the **Body**

- Complete sentences, punctuation, and paragraph breaks
13.3 – Limits and Continuity

A set is **closed** if it contains ALL of its boundary points.

A set is **open** if it contains NONE of its boundary points.

A set **S** is a set

Neighborhood of a point c is

Point b is a **Boundary Point of S** since ANY neighborhood has points inside and outside of S.

Point a is an **Interior Point of S** since SOME neighborhood has only points in S.

Boundary Set of S is denoted "∂$S"

$S = (0, 1]$

$\partial S = \{0, 1\}$ is a subset

$(0-e, 0+\varepsilon)$

$(\frac{1}{2} - \frac{1}{4}, \frac{1}{2} + \frac{1}{4}) \subseteq S$, $\frac{1}{2}$ is an interior pt.
Examples:
1. \(\{(x,y) : 2 < x < 5, 4 < y < 6\} = S \)

\[S = \{(x,y) | 2 \leq x \leq 5, \ y = 4 \text{ or } 6\} \cup \{(x,y) | x = 2 \text{ or } 5, \ 4 \leq y \leq 6\} \]

\(S \) is open
2. \(\{(x, y): 2 \leq x \leq 5, 4 \leq y \leq 6\} = S \)

\[S \]

\(S \) is the same as \# 1

Also, \(S \) is contained in \(S \) here

\(S \subseteq S \)

Here \(S \) is \boxed{\text{closed}}

\(\partial S = \{ (x, y) | 2 \leq x \leq 5, y = 4 \text{ or } 6 \} \leftarrow \text{Two horizontal segments} \)

\(\cup \{ (x, y) | x = 2 \text{ or } 5, 4 \leq y \leq 6 \} \leftarrow \text{Two vertical segments} \)
3. \(\{(x, y) : 2 \leq x \leq 5, 4 < y < 6\} = S \)

\((3, 6) \)

\((5, 5) \)

\(y = 6 \)

\(y = 4 \)

\(x = 2 \)

\(x = 5 \)

\(S \) is as in #1

\(S \) is not open since \((5, 5) \in S\)

\(S \) is not closed since \((3, 6) \notin S\)
4. \(S = \{(x, y) : y \leq x^2\} \)

\(S = \{ (x, y) \mid y = x^2 \} \)

and \(\mathcal{C} S \leq S \)

\(S \) is closed
5. \(S = \{(x, y, z) : x^2 + y^2 \leq 1, z > 1\} \)

\(S \) is an infinitely tall cylinder w/ radius = 1 and no bottom.

Why is \(S \) not open?

\((1, 0, 2) \in S\)

Why is \(S \) not closed?

\((0, 0, 1) \notin S\)

\(\partial S = \{(x, y, z) | x^2 + y^2 \leq 1, z = 1\} \) \(\quad \text{Bottom} \)

\(\cup \{(x, y, z) | x^2 + y^2 = 1, z \geq 1\} \) \(\quad \text{Cylindrical Side} \)
1. For a set to be closed it must
 a. Contain all of its boundary points
 b. Have a limit on its domain ← nonsense
 c. Contain some of its boundary points ← not open
 d. Not contain any boundary points ← open
 e. None of these

2. Give the boundary of the set $S = \{(x, y): 1 < x^2 + y^2 \leq 4\}$
 a. the circle $x^2 + y^2 = 4$
 b. the circle $x^2 + y^2 = 1$
 c. this set has no boundary ← incorrect
 d. the circles $x^2 + y^2 = 4$ and $x^2 + y^2 = 1$
 e. none of these
Limits

In calculus 1, we said \(\lim_{x \to a} f(x) \) exists iff

\[
\lim_{x \to a} f(x) = L
\]

And we learned the *Formal Definition of Limit*:

The limit of \(f(x) \) as \(x \) approaches \(a \) is \(L \)

\[\lim_{x \to a} f(x) = L\]

if and only if, given \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that \(0 < |x - a| < \delta \) implies that \(|f(x) - L| < \varepsilon \).

Both exist and agree.

\(x \neq a \)

\(x \) is close to \(a \)

A deleted neighborhood of \(a \)

The reader’s ability to resolve output difference
Now, in \mathbb{R}^2 and \mathbb{R}^3:

DEFINITION 14.6.1 THE LIMIT OF A FUNCTION OF SEVERAL VARIABLES

Let f be a function defined at least on some deleted neighborhood of x_0.

\[
\lim_{x \to x_0} f(x) = L
\]

if for each $\epsilon > 0$ there exists a $\delta > 0$ such that

\[
0 < ||x - x_0|| < \delta \quad \text{then} \quad |f(x) - L| < \epsilon.
\]

Do all paths yield the same limit value???

There are infinitely many paths through any point x_0.

If any two paths yield different limit values

then $\lim_{x \to x_0} f(x)$ DNE.
Note:

\[\lim_{x \to a} = \text{Where is the function of } x? \]

Never has a meaning!
Examples:

1. Find \(\lim_{(x,y) \to (0,0)} f(x,y) \) for \(f(x,y) = \frac{y^2}{x^2 + y^2} \)

\[
\begin{align*}
\lim_{(x,y) \to (0,0)} f(x,y) &= \lim_{(x,y) \to (0,0)} \frac{y^2}{x^2 + y^2} \\
&= \lim_{y \to 0} \frac{y^2}{y^2} = 1 \\
&= \begin{cases}
1 & \text{if } y \neq 0 \\
\text{DNE if } y = 0
\end{cases}
\end{align*}
\]

Note: \(\frac{y^2}{y^2} \neq 1 \)

2. \(y \)-axis, \(x = 0 \)

\[
\lim_{y \to 0} f(0,y) = \lim_{y \to 0} \frac{y^2}{x^2 + y^2} = 1 \\
\text{if } y \neq 0
\]

3. \(y = x^2 \)

\[
\lim_{x \to 0} f(x,x^2) = \lim_{x \to 0} \frac{(x^2)^2}{x^2 + (x^2)^2} = \lim_{x \to 0} \frac{x^4}{x^2 + x^4} = \lim_{x \to 0} \frac{4x^3}{2x + 4x^3} = \lim_{x \to 0} \frac{12x^2}{2 + 12x^2} = 0
\]

\[
\lim_{x \to 0} f(x,0) = \lim_{x \to 0} \frac{0}{x^2} = 0
\]

4. \(y = x, f(x,x) \)

\(f(0,0) \) is undefined

I suspect this limit DNE.

Let's show this using paths (curves) through \((0,0) \).

Examples:

- \(x \)-axis, \(y = 0 \)
 Look at \(f(x,0) \)
- \(y \)-axis, \(x = 0 \)
 Look at \(f(0,y) \)
- \(y = mx \)
 Look at \(f(x,mx) \)
- \(y = x^2, f(x,x^2) \)
- \(y = \sin(x), f(x,\sin(x)) \)

And infinitely many more
2. Find \(\lim_{(x,y) \to (1,2)} f(x,y) \) for \(f(x,y) = \frac{y^2}{x^2 + y^2} \)

This function is continuous except at \((x,y) = (0,0)\).

Thus, \(\lim_{(x,y) \to (1,2)} f(x,y) = f(1,2) = \frac{4}{1+4} = \frac{4}{5} \).
3. Show that the function \(f(x, y) = \frac{x^2 y}{x^4 + y^2} \) has a limit as \((x, y) \to (0, 0)\) along any line through the origin, but
\[
\lim_{(x, y) \to (0, 0)} f(x, y)
\]
still does not exist.

\[
y = mx \quad \lim_{x \to 0} f(x, mx) = \lim_{x \to 0} \frac{x^2 \cdot mx}{x^4 + m^2 x^2} = \lim_{x \to 0} \frac{x \cdot mx}{x(x^2 + m^2)} = 0
\]

\[
y = ax^2, x = 0 \quad \lim_{y \to 0} f(0, y) = \lim_{y \to 0} \frac{0 \cdot x^2}{y^4 + y^2} = \lim_{y \to 0} \frac{0}{y^2} = 0
\]

Thus, for any line through \((0, 0)\), \(\lim_{(x, y) \to (0, 0)} f(x, y) = 0 \)

Check \(y = x^2 \quad \lim_{x \to 0} f(x, x^2) = \lim_{x \to 0} \frac{x^2 \cdot x^2}{x^4 + (x^2)^2} = \lim_{x \to 0} \frac{x^4}{2x^4} = \frac{1}{2} \)

Since one path gives 0 and another gives \(\frac{1}{2} \)

We cannot define \(\lim_{(x, y) \to (0, 0)} f(x, y) \) so it DNE
Lec Pop 06-1

3 C
4 B
5 E