Instructions

- Homework will NOT be accepted through email or in person. Homework must be submitted through CourseWare BEFORE the deadline.
- Submit the completed assignment at http://www.casa.uh.edu under "EMCF" and choose LecAlt04.

For #1 – 2, Interpret \(r(t) \) as the position of a moving object at time \(t \).

\[
\mathbf{r}(t) = \sin(2t)\mathbf{i} + \cos(2t)\mathbf{j} - \sqrt{5}t\mathbf{k}
\]

1. Find the unit tangent vector
 a. \(\mathbf{T}(t) = \cos(2t)\mathbf{i} - \sin(2t)\mathbf{j} \)
 b. \(\mathbf{T}(t) = \cos(2t)\mathbf{i} - \sin(2t)\mathbf{j} - \sqrt{5}\mathbf{k} \)
 c. \(\mathbf{T}(t) = \frac{2}{3} \cos(2t)\mathbf{i} - \frac{2}{3} \sin(2t)\mathbf{j} - \frac{\sqrt{5}}{3}\mathbf{k} \)
 d. \(\mathbf{T}(t) = \frac{2}{\sqrt{13}} \cos(2t)\mathbf{i} - \frac{2}{\sqrt{13}} \sin(2t)\mathbf{j} - \frac{\sqrt{5}}{\sqrt{13}}\mathbf{k} \)
 e. None of these

2. Find the principal normal vector
 a. \(\mathbf{N}(t) = -\sin(2t)\mathbf{i} - \cos(2t)\mathbf{j} \)
 b. \(\mathbf{N}(t) = \sin(2t)\mathbf{i} + \cos(2t)\mathbf{j} \)
 c. \(\mathbf{N}(t) = -\frac{4}{3} \sin(2t)\mathbf{i} - \frac{4}{3} \cos(2t)\mathbf{j} \)
 d. \(\mathbf{N}(t) = -\frac{4}{3} \cos(2t)\mathbf{i} - \frac{4}{3} \sin(2t)\mathbf{j} \)
 e. None of these

3. The length of the curve \(\mathbf{r}(t) = (t \sin t + \cos t)\mathbf{i} + (t \cos t - \sin t)\mathbf{j} + \frac{\sqrt{3}}{2}t^2\mathbf{k} \) for \(0 \leq t \leq 2 \) is
 a. 2
 b. 4
 c. 2/3
 d. 3
 e. None of the above
4. Suppose \(\mathbf{r}(t) \) is a parameterization for a curve \(C \) such that \(\mathbf{r}'(t) \neq \mathbf{0} \) and \(\mathbf{T}'(t) \neq \mathbf{0} \) for all \(t \). The principal normal vector \(\mathbf{N}(t) \) will always be ____ to \(\mathbf{T}'(t) \).
 a. Adjacent
 b. Co-linear
 c. Parallel
 d. Perpendicular
 e. None of the above

5. Suppose a curve \(C \) is parameterized by \(\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k} \), such that \(x'(t), y'(t), \) and \(z'(t) \) are continuous functions and \(\| \mathbf{r}'(t) \| \neq 0 \) for all \(t \). This parameterization would be called:
 a. Slick
 b. Soft
 c. Smooth
 d. Swift
 e. None of these

6. Given a parameter value \(t_0 \) for a parameterized curve \(C \), parameterized by \(\mathbf{r}(t) \), which of the following is not necessarily within the osculating plane corresponding to this time \(t_0 \)?
 a. \(\mathbf{r}(t_0) \)
 b. \(\mathbf{r}'(t_0) \)
 c. \(\mathbf{N}(t_0) \)
 d. \(\mathbf{T}(t_0) \)
 e. None of these

7. – 10. Choose A