1. Suppose the line $2x - y + 1 = 0$ is tangent to the level curve $f(x, y) = 2$ at the point $(0, 1)$. Determine which of the vectors below is parallel to $\nabla f(0, 1)$.
 a. $\mathbf{i} + \mathbf{2j}$
 b. $2\mathbf{i} + \mathbf{j}$
 c. $\mathbf{i} - \mathbf{2j}$
 d. $-2\mathbf{i} + \mathbf{j}$
 e. $\mathbf{i} + \mathbf{j}$
 f. None of these

2. The points (x, y) at which the tangent plane to the surface $z = x^2 + \frac{1}{2}y^2 + x^2y - 6$ is horizontal are:
 a. $(-1,1), (-1,-1)$
 b. $(0,0), (1,-1), (-1,-1)$
 c. $(0,0), (1,-1)$
 d. $(1,1), (1,-1), (-1,1)$
 e. none of these

3. Which of the following best describes the function $f(x, y) = 2x^3 - 3x^2 - y^2$ at the point $(0,0)$?
 a. Local maximum
 b. Local minimum
 c. Saddle point
 d. It is a stationary point but the 2nd partials test is inconclusive
 e. It is not a stationary point

4. Which of the following best describes the function $f(x, y) = 2x^3 - 3x^2 - y^2$ at the point $(-1,0)$?
 a. Local maximum
 b. Local minimum
 c. Saddle point
 d. It is a stationary point but the 2nd partials test is inconclusive
 e. It is not a stationary point
5. Which of the following best describes the function \(f(x, y) = 2x^3 - 3x^2 - y^2 \) at the point (1,0)?
 a. Local maximum
 b. Local minimum
 c. Saddle point
 d. It is a stationary point but the 2nd partials test is inconclusive
 e. It is not a stationary point

6. What is the maximum value of \(f(x, y) = 4x^2 - y^2 \) on the region where \(x^2 + y^2 \leq 1 \)?
 a. 4
 b. 2
 c. -1
 d. -2
 e. 0
 f. None of these

7. What is the maximum value of \(f(x, y) = x^2 - x - y \) on the region where
\(\{(x, y) : 0 \leq x \leq 1, 0 \leq y \leq 1 \} \) ?
 a. -2
 b. -3/2
 c. -5/4
 d. -1
 e. -3/4
 f. None of these

8. What is the maximum value of \(f(x, y) = y(x - 3) \) on the region where \(\{(x, y) : x^2 + y^2 \leq 9 \} \) ?
 a. \(\frac{27}{4} \)
 b. \(-\frac{27}{4} \)
 c. \(\frac{27\sqrt{3}}{4} \)
 d. \(-\frac{27\sqrt{3}}{4} \)
 e. None of these

9. What is the minimum value of \(f(x, y) = y(x - 3) \) on the region where \(\{(x, y) : x^2 + y^2 \leq 9 \} \) ?
 a. \(\frac{27}{4} \)
 b. \(-\frac{27}{4} \)
 c. \(\frac{27\sqrt{3}}{4} \)
 d. \(-\frac{27\sqrt{3}}{4} \)
 e. None of these
10. Find the minimum value of \(f(x,y) = (x-1)^2 + (y-4)^2 + (3 - x - 2y)^2 \)
 a. 0
 b. 1
 c. 3
 d. 6
 e. -1
 f. None of these

11. The stationary point(s) of the function \(z = x^2 + \frac{1}{3}y^3 - y^2 - 2x - 8y + 5 \) are:
 a. (4, 1) and (-1, 2)
 b. (1, 0) and (3, 2)
 c. (1, 2) and (-1, 4)
 d. (1, 4) and (1, -2)
 e. None of the above

12. The stationary point (1, 4) of the function \(f(x,y) = 2x^2 + y^2 - xy - 7y \) is a
 a. Local maximum
 b. Local minimum
 c. Saddle point

13. – 20. Choose A