Math 1432 Final Exam Review

- 1. Find the **net area** bounded by the graph of $f(x) = x^3 x^2$ and the x-axis on the interval [0,2].
- 2. Find the **area** bounded by the graph of $f(x) = x^3 x^2$ and the x-axis on the interval [0,2].
- 3. Find the area of the region bounded by the line x = 4 and the graph of $f(x) = x^2$.
- 4. Revolve the region in problem 3 about the x-axis, and give the integral resulting from using the method of washers to find its volume. Do not compute the integral!
- 5. Revolve the region in problem 3 about the y-axis, and give the integral resulting from using the method of cylindrical shells to find its volume. Do not compute the integral!
- 6. R is the region bounded by the given graphs and the given axis. Sketch each graph then find the area of R, the volume when R is revolved about the x-axis and the volume when R is revolved about the y-axis.

a.
$$y = x^2$$
, $y = 6 - x$, $x - axis$

b.
$$y = x^2$$
, $y = 6 - x$, $y - axis$

7. Given F(x) for each problem, graph the function and shade the area between F(x) and the x-axis, find the x-coordinate of the centroid of the shaded region and find the y-coordinate of the centroid of the shaded region.

a.
$$F(x) = x^2 - x$$

b.
$$F(x) = x^2 + 4x$$

8. Given F(x) and the interval [a, b], graph F(x) over the interval, find the average value of F(x) on that interval and find the value of c that verifies the conclusion of the mean value theorem for integrals for the function F over the interval [a, b].

a.
$$F(x) = x^2 - x$$
 [0,1]

b.
$$F(x) = x^2 + 3x \quad [-3,0]$$

c.
$$F(x) = x^2 - 4$$
 [-2,2]

9. Give an equation relating x and y for the curve given parametrically by

a.
$$x(t) = -1 + 3 \tan t$$
 $y(t) = 1 + 2 \sec t$

b.
$$x(t) = 2e^{t}$$
 $y(t) = 1 - 3e^{-2t}$

10. Integrate:

a.
$$\int \frac{\csc^2 x}{\sqrt{\cot x}} dx$$

b.
$$\int_{-8}^{0} \frac{1}{\sqrt{1-x}} dx$$

c.
$$\int \sin^3 3x \cos 3x \, dx$$

$$d. \quad \int_{2}^{7} x \sqrt{x^2 + 2} dx$$

e.
$$\int (x^2 - 2)\cos(x^3 - 6x)dx$$

f.
$$\int \frac{2x}{\sqrt{9-x^2}} dx$$

$$g. \int_0^1 \frac{2x}{\left(x^2+3\right)^4} dx$$

h.
$$\int \sec^2(2x)dx$$

i.
$$\int \csc^2(3x)dx$$

j.
$$\int \sec(2x)\tan(2x)dx$$

k.
$$\int \sqrt{x+1}dx$$

1.
$$\int x(x^2+1)^4 dx$$

m.
$$\int (\cosh(3x) + \sinh(2x)) dx$$

n.
$$\int e^{3x} dx$$

o.
$$\int \frac{\ln(x^3)}{x} dx$$

$$p. \int (e^{7x} - \sinh(5x)) dx$$

q.
$$\int \frac{\sin(3x)}{16 + \cos^2(3x)} dx$$

$$r. \int \frac{6x}{4+x^4} dx$$

s.
$$\int \tan(3x)dx$$

t.
$$\int \frac{\arctan(3x)}{1+9x^2} dx$$

u.
$$\int \frac{1}{\sqrt{4+x^2}} dx$$

$$v. \int \sqrt{9-x^2} dx$$

w.
$$\int 3 \ln(4x) dx$$

$$x. \int x^2 e^x dx$$

y.
$$\int \frac{5x+14}{(x+1)(x^2-4)} dx$$

z.
$$\int \frac{x^2 + 5x + 2}{(x+1)(x^2+1)} dx$$

aa.
$$\int \frac{2x^2}{\sqrt{9-x^2}} dx$$

bb.
$$\int 2 \arctan(10x) dx$$

cc.
$$\int 3x \cos(2x) dx$$

11. Determine if the following sequences converge or diverge. If they converge, give the limit.

a.
$$\left\{ \left(\frac{2n}{n+1} \right) \right\}$$

b.
$$\left\{ \frac{6n^2 - 2n + 1}{\sqrt{4n^3 - 1}} \right\}$$

c.
$$\left\{\frac{n!}{(n+2)!}\right\}$$

d.
$$\left\{\frac{3^n}{e^n}\right\}$$

$$e. \quad \left\{ \frac{4n^2 + 1}{n^2 - 3n} \right\}$$

12. Determine if the following series (A) converge absolutely, (B) converge conditionally or (C) diverge.

a.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sqrt{n}}{n+3}$$

b.
$$\sum_{n=1}^{\infty} \frac{\cos \pi n}{n^2}$$

c.
$$\sum_{n=0}^{\infty} \frac{4n(-1)^n}{3n^2 + 2n + 1}$$

d.
$$\sum_{n=0}^{\infty} \frac{3(-1)^n}{\sqrt{3n^2 + 2n + 1}}$$

e.
$$\sum_{n=0}^{\infty} \frac{3n(-1)^n}{\sqrt{3n^2 + 2n + 1}}$$

f.
$$\sum_{n=0}^{\infty} \left(4(-1)^n \left(\frac{n}{n+3} \right)^n \right)$$

g.
$$\sum_{n=0}^{\infty} \left(\frac{2(-1)^n \arctan n}{3 + n^2 + n^3} \right)$$

h.
$$\sum_{n=0}^{\infty} \left(\frac{(-1)^n 3^n}{4^n + 3n} \right)$$

$$\sum_{n=0}^{\infty} \left(\frac{(-1)^n 3}{(n+2)\ln(n+2)} \right)$$

13. Find the sum of the following convergent series:

a.
$$\sum_{n=0}^{\infty} 2\left(-\frac{4}{9}\right)^n$$

b.
$$\sum_{n=0}^{\infty} \left(\frac{1}{3^n} - \frac{5}{6^n} \right)$$

14. Give the derivative of each power series below:

a.
$$\sum_{n=0}^{\infty} \frac{(n^2+1)x^n}{\sqrt{n^5+3n}}$$

b.
$$\sum_{n=0}^{\infty} \frac{(2n+1)x^n}{n^3}$$

15. For each of the problems in number 14, give the antiderivative F of the power series so that F(0)=0.

16. Evaluate each improper integral:

a.
$$\int_{1}^{9} (x-1)^{-2/3} dx$$

b.
$$\int_{0}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$

c.
$$\int_{0}^{\infty} \frac{2}{1+x^2} dx$$

- 17. Find the formula for the area of $r = 1 + 2\sin\theta$
 - a. Inside inner loop
 - b. Inside outer loop but outside inner loop
 - c. Inside outer loop and below x-axis
- 18. Find the smallest value of n so that the nth degree Taylor Polynomial for $f(x) = \ln(1+x)$ centered at x = 0 approximates $\ln(2)$ with an error of no more than 0.001 (also be able to do this with some of the other Taylor Polynomials)
- 19. Find the radius of convergence and interval of convergence for the following Power series:

a.
$$\sum_{n=0}^{\infty} \frac{(x-2)^{n+1}}{(n+1)3^{n+1}}$$

b.
$$\sum_{n=0}^{\infty} \frac{1}{3^n} (x-1)^n$$

c.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{4^n}$$

20. Determine the convergence or divergence for each series with the given general term:

Series

Converge or Diverge?

Test used

$\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{n^3}}$	
$\sum_{n=1}^{\infty} \frac{2^n}{n^3}$	
$\sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n} \right)$	
$\sum_{n=1}^{\infty} \frac{3^{2n}}{n!}$	

$\sum_{n=1}^{\infty} \cos(\pi n)$ $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n}$	
$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n}$	
$\stackrel{\sim}{\sim} (-1)^{n-1} n^2$	
$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n^2}{3n^3 + 1}$	
$\sum_{n=0}^{\infty} 3\left(-\frac{1}{2}\right)^n$	
$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$	
$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$ $\sum_{n=1}^{\infty} ne^{-n^3}$ $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n$ $\sum_{n=1}^{\infty} \frac{1}{n^3+1}$ $\sum_{n=0}^{\infty} \left(\frac{2}{9}\right)^n$ $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$	
$\sum_{n=1}^{\infty} \left(\frac{n}{n+1} \right)^n$	
$\sum_{n=1}^{\infty} \frac{1}{n^3 + 1}$	
$\sum_{n=0}^{\infty} \left(\frac{2}{9}\right)^n$	
$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$	
$\sum_{n=1}^{\infty} (0.34)^n$	
$\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ $\sum_{n=1}^{\infty} \frac{1}{2n+1}$	
$\sum_{n=1}^{\infty} \frac{1}{2n+1}$	