$$
\begin{aligned}
& g(x)=0 \\
& g^{\prime}(x)=0
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=4 x^{2}-8 x+3 \\
& f^{\prime}(x)=8 x^{\prime}-8=8 x-8
\end{aligned}
$$

Math 1314
Lesson 23: Partial Derivatives
$G G B$

When we are asked to find the derivative of a function of a single variable, $f(x)$, we know exactly what to do. However, when we have a function of two variables, there is some ambiguity. With a function of two variables, we can find the slope of the tangent line at a point P from an infinite number of directions. We will only consider two directions, either parallel to the x axis or parallel to the y axis. When we do this, we fix one of the variables. Then we can find the derivative with respect to the other variable.

S oo, if we fix y, we can find the derivative of the function with respect to the variable x. And if we $\{$ fix x, we can find the derivative of the function with respect to the variable y.

These derivatives are cared partial derivatives.
First Partial Derivatives
Notation:

$$
\begin{aligned}
& \text { n: } \begin{array}{l}
\text { delta } \\
f_{x}=\frac{\partial f}{\partial x}=\text { first partial with respect to } x \\
\text { "f sub } x \text { " } y \text { is a constant } \\
f_{y}=\frac{\partial f}{\partial y}=\text { first partial with respect to } y \\
\text { "f sub" }
\end{array} .
\end{aligned}
$$

Example 1: Find the first partial derivatives of the function without using GGB.

$$
f(x, y)=x^{2}-3 x y^{2}+4 y^{2} .
$$

$f+$

$$
\begin{aligned}
& \text { treaty like a constant } f(x, y)=x^{2}-3 y^{2} \cdot x+\overbrace{y^{2}}^{\text {constant }} \\
& \qquad f_{x}=2 x-3 y^{2}+0=2 x-3 y^{2}
\end{aligned}
$$

fy treat x like a constant

$$
f(x, y)=\overbrace{x^{2}}^{\text {Constant }}-3 x \cdot y^{2}+4 y^{2}
$$

$$
f_{y}=0-3 x \cdot 2 y+8 y=-6 x y+8 y
$$

Example 2: Find the first partial derivatives of the function $f(x, y)=5 x^{2} y^{2}-2 x^{3} y+9 x^{2}-14 y^{2}+10$.

GGB Command:
Derivative [function, variable]
f_{x} Derivative $[f, x]$

$$
f_{x}=\left(a(x, y) \Rightarrow-6 x^{2} y+10 x y^{2}+18 x\right.
$$

$f_{y} \quad f_{y}=b(x, y)=-2 x^{3}+10 x^{2} y-28 y$

Example 3: Find the first partial derivatives of the function $f(x, y)=4 x^{3} y^{2}+2 x^{2} y^{3}-12 x^{2}+3 y^{2}+10$.

GGB Command:
Derivative [function, variable]
$f_{x} \quad f_{x}=12 x^{2} y^{2}+4 x y^{3}-24 x$
Derivative $[f, x]$
$f_{y} \quad f_{y}=8 x^{3} y+6 x^{2} y^{2}+6 y$
Derivative $[f, y]$
we found partials in ex 3 .
Example 4: Find the first partial derivatives of the function
$f(x, y)=4 x^{3} y^{2}+2 x^{2} y^{3}-12 x^{2}+3 y^{2}+10$ evaluated at the point $(-1,3)$.

$$
\rangle\left. f_{y}\right|_{\langle-1,3)}
$$

Notation: $f_{x}\left|(-1,3) \quad f_{y}\right|(-1,3)$

GGB Command:

$$
\text { for }\left.f_{x}\right|_{(-1,3)} \rightarrow a(-1,3) \text { for } f_{y} \mid(-1,3) \longrightarrow b(-1,3)
$$

$$
\begin{aligned}
\left.f_{x}\right|_{(-1,3)} & =24 \\
& a(-1, \overline{3})
\end{aligned}
$$

$$
\left.f_{y}\right|_{(-1,3)}=48
$$

$b(-1,3)$

Second-Order Partial Derivatives
Sometimes we will need to find the second-order partial derivatives. To find a second-order partial derivative, you will take respective partial derivatives of the first partial derivative. There are a total of 4 second-order partial derivatives.

Notation:

Example 5: Find the second-order partial derivatives of the function

$$
f(x, y)=3 x^{2} y^{2}-5 x^{2}+10 y .
$$

GGB Command:

$$
\begin{aligned}
& f_{x}=a(x, y)=6 x y^{2}-10 x \\
& f_{y}=b(x, y)=6 x^{2} y+10
\end{aligned}
$$

a $f_{x x}=c l x y=4 y^{2}-10$
$\approx f_{x y}=12 x y$
b $f_{y y}=6 x^{2}$
b

$$
f_{y x}=12 x y
$$

$\operatorname{Deriv}[a, x]$

$$
\operatorname{Deriv}[a, y]
$$

$$
\text { Deriv }[b, y]
$$

$$
\text { Demo } \left.C_{b_{i}}\right]
$$

What do you notice about the mixed partials? they are equal

Example 6: Find the second-order partial derivatives of the function

$$
f(x, y)=3 x^{2}-x^{3} y^{3}+5 x y+6 y^{3} .
$$

GGB Command:

$$
\begin{aligned}
& f_{x}=a(x, y)=-3 x^{2} y^{3}+6 x+5 y \\
& f_{y}=b(x, y)=-3 x^{3} y^{2}+5 x+18 y^{2}
\end{aligned}
$$

a $f_{x x}=c(x, y)=-6 x y^{3}+6$
${ }^{a} f_{x y}=d(x, y)=-9 x^{2} y^{2}+5 \leqslant$
b

$$
f_{y x}=g(x, y)=-9 x^{2} y^{2}+5
$$

What do you notice about the mixed partials?

Example 7: Evaluate the first and second-order partial derivatives of $f(x, y)=3 x^{2}-x^{3} y^{3}+5 x y+6 y^{3}$ at the point $(1,2)$.

GGB Command:
function name $(1,2)$

$$
\left.f_{x}\right|_{(1,2)}=a(1,2\rangle=-8
$$

$$
\left.f_{y}\right|_{(1,2)}=b(1,2)=65
$$

$$
\left.f_{x x}\right|_{(1,2)}=c(1,2)=-42
$$

$$
\left.f_{x y}\right|_{(1,2)}=d(1,2)=-31
$$

$$
\left.f_{y y}\right|_{(1,2)}=e(1,2)=60
$$

$$
\left.f_{y x}\right|_{(1,2)}=g(1,2)=-31
$$

$f(x, y)$
and derivatives Derivative $[f, y] \quad f_{x}=a(x, y] \quad f_{x x}=\operatorname{Deriv}[a, x] \quad f_{y y}=\operatorname{Der}[b, y]$ $\left.\operatorname{Derivative}[f, y] \quad f_{y}=b l x y\right] \quad f_{x y}=\operatorname{Dein}[a, y]=f_{y x}=\operatorname{Deis}[b, p$

A function of the form $f(x, y)=a x^{b} y^{1-b}$ where a and b are positive constants and $0<b<1$ is called a Cobb-Douglas production function. In this function, \underline{x} represents the amount of money spent for labor, and \underline{y} represents the amount of money spent on capital expenditures such as factories, equipment, machinery, tools, etc. The function measures the output of finished products.

The first partial with respect to x is called the marginal productivity of labor. It measures the change in productivity with respect to the amount of money spent for labor. In finding the first partial with respect to x, the amount of money spent on capital is held at a constant level.

The first partial with respect to y is called the marginal productivity of capital. It measures the change in productivity with respect to the amount of money spent on capital expenditures. In finding the first partial with respect to y, the amount of money spent on labor is held at a constant level.

Example 8: A country's production can be modeled by the function $f(x, y)=50 x^{2 / 3} y^{1 / 3}$ where x gives the units of labor that are used and y represents the units of capital that were used.

enter finto GGB

A. Find the first partial derivatives.

$$
\begin{aligned}
& \text { Derivative }[f, x] \\
& \text { Derivative }[f, y]
\end{aligned}
$$

$$
\begin{aligned}
& f_{x}=a(x, y)=\frac{\frac{100}{3} \sqrt[3]{y}}{\sqrt[3]{x}} \\
& f_{y}=b(x, y)=\frac{\frac{50}{3} \sqrt[3]{x^{2}}}{\sqrt[3]{y^{2}}}
\end{aligned}
$$

B. Find the marginal productivity of labor and the marginal productivity of capital when the amount expended on labor is 125 units and the amount spent on capital is 27 units.
$a(125,27)=20$
$2^{\text {nne reusing }}$ units at unit of labor expense
increasing at the rate of
b $(125,27)=46.2963$

expense
C. Should the government of the county encourage capital investment labor investment?

$\sqrt[3]{x^{2}}$

$$
(x \wedge 2) \wedge(1 \mid 3)
$$

Example 9: A company's revenues can be modeled by the function
$R(x, y)=-0.2 x^{2}-0.25 y^{2}-0.2 x y+200 x+160 y$ where x gives the number of product A and y gives the number of product B that are produced and sold each week and $R(x, y)$ gives revenues dollars. Find the first partial derivatives and evaluate them when $x=300$ and $y=250$. Explain the results.

$$
\begin{aligned}
& \text { enter } R(x, y) \text { into } G G B \\
& \begin{cases}\text { Derivative }[R, x] & R_{x}=a(x, y)=\frac{-2 x-y+1000}{5} \\
\text { Derivative }[R, y] & R_{y}=b(x, y)=\frac{-2 x-5 y+1600}{10} \\
\left.R_{x}\right|_{(300,250} & =a(300,250)=30\end{cases} \\
& \text { increasing at the rate of } \$ 301 \text { unitincreane in } A
\end{aligned}
$$

$$
\left.R_{y}\right|_{(300,250)}=b(300,250)=-25
$$

decreasing at the rate of 25 unit increase in B

