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Math 1314
Lesson 23: Partial Derivatives

When we are asked to find the derivative of a function of a single variable, f(x), we know
exactly what to do. However, when we have a function of two variables, there is some
ambiguity. With a function of two variables, we can find the slope of the tangentline at a point
P from an infinite numberof directions: \We will only consider two directions, either parallel to
the x axis or parallel to the y axis. When we do this, we-fix-one-of thevariables. Then we can
find the derivative with respect to the other variable. . ¢ v 1ipr = c owstant

So, if we fix y, we can find the derivative of the function with respect to the variable x. And if we
fix x, we can -an find the derivative of the function with respect to the variable v.

These derivatives are calfed partial derivatives._ >
———— First Partial Derivatives
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Example 1: Find the first partial derivatives of the function without using GGB.
f(x,y)=x*-3xy? +4y>
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Example 2: Find the first partial derivatives of the function
f(x,y) =5x*y* —2x°y +9x* —14y* +10.
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Example 3: Find the first partial derivatives of the function
f(x,y)=4x>y? +2x°y® —12x* +3y* +10.
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Example 4: Find the first partial derivatives of the function 5 ,
_ Av3y2 2,3 1942 2 it (o B K2
f(X,y)=4x"y" +2x°y” —12x" + 3y“ +10 evaluated at the point (-1, 3).
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Second-Order Partial Derivatives

Sometimes we will need to find the second-order partial derivatives. To find a second-order

partial derivative, you will take respective partial derivatives of the first partial derivative. There
are a total of 4 second-order partial derivatives.
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Example 5: Find the second-order partial derivatives of the function

f(x,y) =3x?y? —5x* +10y.
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What do you notice about the mixed partials?
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Example 6: Find the second-order partial derivatives of the function
f(x,y)=3x"—x%y® +5xy +6Yy°.
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What do you notice about the mixed partials?



Example 7: Evaluate the first and second-order partial derivatives of
f(x,y) =3x" —x%y® +5xy + 6y*at the point (1, 2).
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A function of the form (X, y) = ax’y"® where a and b are positive constants and 0<b <1 is

e . . . .
P ,\’called a Cobb-Douglas production function. In this function, x represents the amount of money

spent for labor, and y represents the amount of money spent on capital expenditures such as
factories, equipment, machinery, tools, etc. The function measures the output of finished _
products.

The first partial with respect-toxiis called the marginalproductivity of labor. It measures the
change in productivity with respect to the amount of money spent for labor. In finding the first
partial with respect to x, the amount of money spent on capital is held at a constant level.

The first partial with respect to y is called the marginal productivity of capital. It measures the
change in productivity with respect to the amount of money spent on capital expenditures. In
finding the first partial with respect to y, the amount of money spent on labor is held at a constant
level.

Example 8: A country’s production can be modeled by the function f (x, y)=50x**y"* where

x gives the units of labor that are used and y represents the units of capital that were used.
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A. Find the first partial derivatives. Lo 9__
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B. Find the marginal productivity of labor and the marginal productivity of capital when the

amount expended on labor is 125 units and the amount spent on capital is 27 units.
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C. Should the government of the county encourage(capital investment @r labor investment?
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Example 9: A company’s revenues can be modeled by the function
R(x, y) =—0.2x*> —0.25y* —0.2xy + 200x +160y where x gives the number of product A and y
gives the number of product B that are produced and sold each week and R(x, y) gives revenues

—e=taswsanrased dollars. Find the first partial derivatives and evaluate them when x =300
and y =250. Explain the results.
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