28 questions; $25 \mathrm{mc}, \frac{3 F R}{\substack{\text { Lessons } \\ 18-24}}$

I hr 50 min to take

Math 1314 ONLINE Final Exam Review

Review Example 1: Suppose $g(x)=x^{3}-2 x^{2}-9 x+18$. Find the zeros of the function.
Root [polynomial]

$$
x=-3,2,3
$$

Review Example 2: Find any points where $f(x)=1.45 x^{2}-7.2 x-1.6$ and $g(x)=2.84 x-1.29$ intersect.

Review Example 3: Suppose that we know the revenues of a company each year since 2005. This information is given in the table below:

A. Create a scatterplot and determine which of the regression models are good candidates for this data.

B. Find regression models for each, and find the related values for r^{2} or R^{2}.

$$
\begin{array}{ll}
\text { Fitpoly }[l i s t 1,3] & f(x)=0.463 x^{3}+0.0788 x^{2}+.2807 x+2.1825 \\
\text { Fitexp }[l i s t 1] & g(x)=1.9328 e^{0.3367 x} \\
\text { RSquare }[1 i s t i, f]=.9943 \quad R S \text { quare }[1 i s+1, g]=.9752
\end{array}
$$

C. Which model would be the best one to use? Why?

$$
\begin{aligned}
& \text { Either...g good } R^{2} \ldots . \text { fit data well.... } \\
& \text { cubic }
\end{aligned}
$$

D. Use that model to predict revenues in 2012.

$$
f(1)=
$$

Review Example 4: Evaluate: $\lim _{x \rightarrow 4} \frac{x+8}{x-4}=\frac{4+8}{4-4}=\frac{12}{0}$
limit dine

$$
\frac{0}{12}=01
$$

Review Example 5: Evaluate: $\lim _{x \rightarrow 3}\left(4 x^{2}-7 x+2\right)=4 \cdot 3^{2}-7(3)+2$

$$
\begin{aligned}
& =4.9-21+2 \\
& =36-21+2=17
\end{aligned}
$$

Review Example 6: Determine if the function given is indeterminate. If it is, use GGB to evaluate the limit.
(2)
enter in to $G G B$

$$
\lim _{x \rightarrow 2} \frac{x^{2}+3 x-10}{x^{2}-4}
$$

(1)

$$
\begin{aligned}
& f(x)=\frac{x^{2}+3 x-10}{x^{2}-4} \\
& \text { Limit }[f, 2]=1.75
\end{aligned}
$$

Indeterminate
Review Example 7: Evaluate: $\lim _{x \rightarrow \infty} \frac{5 x^{2}+2 x+6}{2 x^{2}-7 x+1}=\frac{5}{2}$

Review Example 8: Evaluate : $\lim _{x \rightarrow \infty} \frac{x-7}{x^{2}+9 x-3}=0$
WO

Review Example 9: Evaluate: $\lim _{x \rightarrow-\infty} \frac{3 x^{4}-4 x+5}{2 x-7 x^{2}}$ d ne B

GOBO BOT EATS DC

(if it exists).

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}\left(x^{2}-1\right)=2^{2}-1=4-1=3 \\
& \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}(x+4)=2+4=6
\end{aligned}
$$

$$
\lim _{x \rightarrow 2} f(x) \text { die }
$$

(1) $f(1)=5(n-1=5-1=4$
(2) $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{2}+3\right)=1^{2}+3=4 \quad \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(5 x-1)=5(1)-1=4$

$$
\lim _{x \rightarrow 1} f(x)=4
$$

(3) $f(1)=\lim _{x \rightarrow 1} f(x)=4$

Review Example 12: Find the derivative of $f(x)=-2 x^{2}+6 x+3$ using the limit definition.

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{n}
$$

$$
m \mid c
$$

$$
\begin{aligned}
& f(x)=-2 x^{2}+6 x+3 \\
& f^{\prime}(x)=-4 x+6
\end{aligned}
$$

Review Example 13: Suppose $f(x)=3 x^{2}-4 x-1$. Find the average rate of change of f over the interval [2,5].

$$
\frac{f(b)-f(a)}{b-a}
$$

$$
\begin{aligned}
\frac{f(5)-f(2)}{5-2} & \\
\frac{54-3}{3} & =\frac{51}{3} \\
& =17
\end{aligned}
$$

Review Example 14: Find the derivative: $f(x)=5 x^{4}+3 x^{3}-4-\frac{6}{x} .5$

$$
\begin{aligned}
& f(x)=5 x^{4}+3 x^{3}-4-6 x^{-1} \\
& f(x)=20 x^{3}+9 x^{2}-0+6 x^{-2}=20 x^{3}+9 x^{2}+\frac{6}{x^{2}}
\end{aligned}
$$

Review Example 15: Find the numerical derivative of $f(x)=x^{\frac{3}{2}}-x$ when $\mathrm{x}=4$.

$$
\begin{aligned}
& \text { enter } f(x) \\
& f^{\prime}(4)=2
\end{aligned}
$$

Review Example 16: Find the numerical derivative of $f(x)=\frac{x}{\sqrt{x^{2}+1}}$ at $\mathrm{x}=2$.

$$
\begin{aligned}
& \text { enter } f(x) \\
& f^{\prime}(2)=0.0894
\end{aligned}
$$

Review Example 17: Write an equation of the line that is tangent to $f(x)=\frac{1}{3} x^{3}-2 x^{2}+7 x$
when $x=3$.
enter $f(x)$
Tangent $[3, f] \Rightarrow y=4 x \quad$
Tangent [point, function] $\quad \begin{array}{rl}m=f^{\prime}(3)=9-12+7=4 \\ \left.f(3)=\frac{2-1}{3}-2 \cdot 9+21=9-18+2\right) \\ m=4 & (3,12) \\ 12=4(3)+b) y \\ 12=12+6 & y=4 x\end{array}$
Review Example 18: A country's gross domestic product (in millions of dollars) is modeled by the function $G(t)=-2 t^{3}+45 t^{2}+20 t+6000$ where $0 \leq t \leq 11$ and $t=0$ corresponds to the beginning of 1997.

$$
2002-1997=5 \quad 2004-1997 \quad \neq 7
$$

Roc (A) At what rate was GDP changing at the beginning of 2002? At the beginning of 2004?
At the beginning of 2009? 2009-1997 = 12
(B) What was the average rate of growth of the GDP over the period 1999-2004?

ARC

A. enter $G(t)$

$$
\begin{array}{ll}
G^{\prime}(5)=320 & \$ 320 \text { million } 1 \text { year } \\
G \cdot(7)=356 & \text { M } \\
G 56 \text { millions year } \\
G \cdot(12) & C 12 \text { is not in domain; cant use the model })
\end{array}
$$

B.

$$
\begin{aligned}
\frac{G(7)-G(2)}{7-2}= & \frac{7659-6204}{5}=\frac{1455}{5}=2-91 \\
& \$ 291 \text { million l year. }
\end{aligned}
$$

$$
\begin{aligned}
& h(t)=-16 t^{2}+v_{0} t+h_{0} \text { feet } \\
& \rightarrow h(t)=-4.9 t^{2}+v_{0} t+h o \quad \text { meters }
\end{aligned}
$$

Review Example 19: Suppose you are standing on the top of a building that is 28 meters high. You throw a ball up into the air, with initial velocity of 10.2 meters per second. ${ }^{1}$ Write the equation that gives the height of the ball at time t. Then use the equation to find the velocity of the ball when $t=2$.
(1) $h(t)=-4.9 t^{2}+10.2 t+28$
(2) Velocity $=h^{\prime}(t)$

$$
h^{\prime}(2)=-9.4
$$

$-9.4 \mathrm{~m} / \mathrm{sec}$

Review Example 20: Find all values of x for which $f^{\prime}(x)=0: \quad f(x)=\frac{1}{3} x^{3}+\frac{5}{2} x^{2}-7 x+3$
(1) $f_{\text {ind }} f^{\prime}(x)$
(2) Find zeros of $f^{\prime}(x)$

$$
R \text { pot }\left[f^{\prime}\right] \quad x=-6.1401,1.1+01
$$

Review Example 21: Find the value of the second derivative when $x=2$:

$$
f(x)=3 x^{4}-5 x^{3}+7 x+12
$$

enter $f(x)$

$$
f^{\prime \prime}(2)=84
$$

or

$$
f^{\prime}(x)=12 x^{3}-15 x^{2}+7
$$

$$
\begin{aligned}
f^{\prime \prime}(x) & =36 x^{2}-30 x \\
f^{\prime \prime}(2) & =36(2)^{2}-30(2) \\
& =144-40 \\
& =84
\end{aligned}
$$

Review Example 22: Suppose a company can model its costs according to the function $C(x)=0.000003 x^{3}-0.04 x^{2}+200 x+70,000$ where $C(x)$ is given in dollars and demand can be modeled by $p=-0.02 x+300$. Write the revenue function and find the smallest positive quantity for which all costs are covered.
(1) $R(x)=x p$

$$
R(x)=x(-0.02 x+300)
$$

(2) Intersect $[C, R]$

$x=628.4552$	
$62<8$	629
small	small
loss	profit

dewan $\{$ Review Example 23: The quantity demanded of a certain electronic device is 8000 units when the price is $\$ 260$. At a unit price of $\$ 200$, demand increases to 10,000 units. The manufacturer will not market any of the device at a price of $\$ 100$ or less. However for each $\$ 50$ increase in suppl' \{ price above $\$ 100$, the manufacturer will market an additional 1000 units. Assume that both the supply equation and the demand equation are linear. Find the supply equation, the demand equation and the equilibrium quantity and price.

$$
\begin{aligned}
& \text { demand }(8000,260)(10000,200) \\
& \text { Find a linear regression model for demand } \\
& d(x)=-0.03 x+500 \\
& \text { fitpoly }[\text { lis }+1,1] \\
& \text { Supply (0, 100) (1000, 150) } \\
& \text { Find a linear regression model for supply } \\
& S(x)=0.05 x+100 \\
& \left.f_{i}+\text { poly [list 1, }\right] \\
& \text { equilibrium quantity } / \text { price } \text { Intersect }[d, 5]=\left(\begin{array}{c}
\text { quality } \\
5000, \\
500
\end{array}\right)
\end{aligned}
$$

Marginal Review Example 24: The weekly demand for a certain brand of DVD player is given by $p=-.02 x+300,0 \leq x \leq 15,000$, where p gives the wholesale unit price in dollars and x denotes the quantity demanded. The weekly cost function associated with producing the DVD players is given by $C(x)=0.000003 x^{3}-0.04 x^{2}+200 x+70,000$. $_{\text {Compute }} C^{\prime}(3000), R^{\prime}(3000)$ and $P^{\prime}(3000)$. Interpret your results

$$
\begin{gathered}
\text { (1) } c^{\prime}(3000)=41 \quad \text { Actual cost to produce the } 300 i^{\text {st }} \text { item } \\
\text { is abant } 341 .
\end{gathered}
$$

(2) Write revenue function $R(x)=x p$

$$
R(x)=x(-0.02 x+300)
$$

$R^{\prime}(3000)=180$
Actual revenue realized of the sale
of 3001 at item is approx an 180
(3) Write profit function
$P(x)=R-C$

$$
\begin{aligned}
& \text { P' (3000 } \quad \text { Actual profit realized on the sale } \\
& \text { of } 3001 \text { st item is approx } 139
\end{aligned}
$$

Average cost $\quad \bar{c}(x)=\frac{C(x)}{x}$
Average cost of producing 3000
items

$$
A(x)=c(x) / x \cdots>A(3000)
$$

Review Example 25: Suppose $p=-0.04 x+150$.
(A) Find the elasticity of demand.
(B) Find $E(50)$ and interpret the results.
(C) Find $E(100)$ and interpret the results.
(D) If the unit price is $\$ 50$, will raising the price result in an increase in revenues or a decrease in revenues?
(E) If the unit price is $\$ 100$, will raising the price result in an increase in revenues or a decrease in revenues?
A. Solve $p=-0.04 x+150$ for x

In $G G B \rightarrow$ view

$$
\begin{array}{r}
f(p)=x=-12 p+12500 \quad f^{\prime}(p)=-12 \\
E(p)=\frac{-p(-12)}{-12 p+12500}=\frac{12 p}{\operatorname{den}}
\end{array}
$$

IAs In the line marked 1 type "solve"
select solve [Equation]
Type in equation, press enter
B. $E(50)=.5$
C. $E L_{100}=2$
demand is elastic;
demand is inelastic.
raise price
\rightarrow increase in revenues
raise price \rightarrow in decrease
Review Example 26: A biologist wants to study the growth of a certain strain of bacteria. She starts with a culture containing 25,000 bacteria. After three hours, the number of bacteria has grown to 63,000 . 2 How many bacteria will be present in the culture 6 hours after she started her study (3) hat will be the rate of growth 6 hours after she started her study? Assume the population grows exponentially and the growth is uninhibited.

$$
\begin{array}{rr}
(0,25000) & \text { Spreadsheet view } \\
(3,43000) & \text { enter points } \\
& \text { create list } \\
& \text { Fitexp }[\text { list }]
\end{array}
$$

(2)

EN

$$
f(6)=158760
$$

158760 bacteria
(3) ROL $f^{\prime}(4)=48911.2811$

$$
(0,50) \quad(17,38.7)
$$

Review Example 27: At the beginning of a study, there are 50 grams of a substance present. After 17 days, there are 38.7 grams remaining. How much of the substance will be present after 40 days? What will be the rate of decay on day 40 of the study? Assume the substance decays exponentially.

$$
f(x)=50 e^{-0.0151 x}
$$

(1) $f(40)=27.3643$
27.4 grams
(2) $\left.f^{\prime} / 40\right)=$

Half life ... start with 300 mg . half life is 12 days

$$
(0,300)(0,150) \cdots \text { spreadsheet view / regression }
$$

Review Example 24: Analyze the function: $f(x)=\frac{3}{2} x^{4}-2 x^{3}+12 x+2$
from domain $(-\infty, \infty)$
zeros Root [polynomial]
asymptotes Asymptotes [function] nome
from f^{\prime}
graph f^{\prime}
find zeros \longrightarrow Critical numbers
number line

relative min \& $x=-1$

> rel min $(-1,-6.5)$
for y value find $f(-1)=-6.5$
f is ines. $(-1, \infty)$
f is deer $(-\infty,-1)$
Graph $f^{\prime \prime}$
find zeros $\longrightarrow \quad f^{\prime \prime}(x)=0$

$$
\operatorname{Root}\left[f^{\prime \prime}\right]
$$

$$
x=0
$$

$$
x=.6667
$$

number line

concavity f is conc \downarrow on $(0$, .L LL $)$
intervals f is conc on $(-\infty, 0) \cup(. \operatorname{cLL} 7, \infty)$
$\begin{array}{ccc}\begin{array}{c}\text { inflection } \\ \text { points }\end{array} & (0,2, & (.6667,9.701) \\ f(0) & f(.6667)\end{array}$

Review Example 28: Suppose a worker's production can be expressed using the function
$N(t)=65-18 e^{-0.27 t}$, where t gives the number of weeks since the worker started his/her job and
$N(t)$ gives the number of units the worker can produce during her/his shift. At what rate would
the worker's productivity be changing after 3 weeks on the job?
ROC $\quad N^{\prime}(3)=2.162$
≈ 2 units pershift/week

Review Example 20: The graph given below is the first derivative of a function, f. Find the intervals) on which the function is increasing, the intervals) on which the function is decreasing, the x coordinate of each relative extremum (and state whether it is a relative maximum or a relative minimum), the intervals) on which the function is concave upward, the interval(s) on which the function is concave downward and the x coordinate of any inflection points.

f has arel max at $x=-1$,
f has arel min at $x=4$
$f^{\prime \prime}$

$$
\begin{aligned}
& f \text { is conc } \downarrow \text { on }(-\infty, 1.5) \\
& f \text { is conc } \uparrow \text { on }(1.5,8)
\end{aligned}
$$

inflection $p+C x=1.5$

Review Example 31: Suppose your costs to produce your product can be express by $C(x)=0.001 x^{2} \quad 5 x+400$ - where x is the number of items produced and $C(x)$ is the total cast to produce x items, given in dollars. If the demand for the product is modeled by the function $p=120.005 x$, what is the maximum revenue?
profit
(1) Write rev. function $R(x)=x p=x(12-0.005 x)$
enter $C(x)$ in $G C_{7} B$
(2) $P(x)=R(x)-C(x)$

$$
P(x)=R-C
$$

(3) graph PI and find critical number
(4) P(critical number)

Review Example 30: An apartment complex estimates that the revenues realized from rending out x of its 10Ω one-bedroon apartments can he modeled by the fylution $R(x)=-12 x^{2}+2112 x$. How math one bedroom apartments should be rented to maximize the revenue? What is the maximum revenue?

$$
r=4
$$

Review Example 32. Use left endpoints and 4 subdivisions of the interval to approximate the area under $f(x)=2 x^{2}+1$ on the interval [0, 2].

$$
\begin{array}{ll}
\Delta x=\frac{b-a}{n} & a b \\
{\left[0, \frac{1}{2}\right]\left[\frac{1}{2}, 1\right]\left[1, \frac{3}{2}\right]\left[\begin{array}{l}
3 \\
2
\end{array}, 7\right]} & \Delta x=\frac{2-0}{4}=\frac{1}{2}
\end{array}
$$

Rectangle Sum [f_{1} start, end, \# of rect, position] Rectangle Sum $[f, 0,2,4,0]=5.5$
Review Example 33: Approximate the area between x axis and the graph of $f(x)=0.3 x^{3}-0.807 x^{2}-3.252 x+6.717$ on $[-2.82,1.33]$ with
A. 50 rectangles and midpoints ends.

Rectangle Sum $[f,-2.82,1.33,50, .5]=26.7597$
B. 10 red angles and right endpoints.

$$
\text { Rectangle Sum }[f,-2.85,1.33,10,1]=26.3577
$$

$*^{*}$
Review Example 34: (Be able to do this by hand!!) Evaluate: $\int_{1}^{3}\left(3 x^{2}+4 x-7\right) d x$
(1) Find antiderivative $\int_{1}^{3}\left(3 x^{2}+4 x-7\right) d y$
(2) Evaluate

$$
\frac{3 x^{3}}{3}+\frac{4 x^{2}}{2}-\left.7 x\right|_{1} ^{3}=x^{3}+2 x^{2}-\left.7 x\right|_{1} ^{3}
$$

$$
\left.\left(3^{3}+2.3^{2}-7.3\right)-\left(1^{3}+2.1^{2}\right)-7.1\right)
$$

Review Example 35: Evaluate $\int_{0}^{3} 4 x\left(x^{2}-3\right)^{5} d x$
(1) Enter $f(x)=4 x\left(x^{2}-3\right)^{5}$
(2) Integral [function, start, end]

$$
\text { Integral }[f, 0,3]=15309
$$

x^{*}
36 A study of worker productivity shows that the rate at which a typical
Review Example 3 :
worker can produce widgets on an assembly line can be expressed as $N(t)=-3 t^{2}+12 t+15$ where t gives the number of hours after a worker's shift has begun. Determine the number of widgets a worker can produce during the first hour of his/her shift. Determine the number of widgets a worker can produce during the last hour of a five hour shift.

$$
\begin{array}{ccc}
{[0,1]} & {[1,2] \quad[2,3][3,4]} & {[4,5]} \\
\text { first } & {\left[\begin{array}{l}
\text { last }
\end{array}\right.}
\end{array}
$$

(1)

$$
\begin{gathered}
\int_{0}^{1}\left(-3 t^{2}+12 t+15\right) d x=20 \\
\text { Integral }[N, 0,1]
\end{gathered}
$$

(2) $\int_{4}^{5}\left(-3 t^{2}+12 t+15\right) d t$

20 units

$$
\text { Integral }[N, 4,5]=8
$$

Review Example de: The median price of a house in a city in Arizona can be approximated by the function $f(t)=t^{3}-7 t^{2}+17 t+190$ where the median price is given in thousands of dollars and t is given as the number of years since 2000. This function has been shown to be valid for the years 2000 to 2005. Determine the average median price of a home in this city during this time period.

$$
\begin{aligned}
& \text { average value } \frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& \frac{1}{5-0} \int_{0}^{5}\left(t^{3}-7 t^{2}+17 t+190\right) d t \\
& \frac{1}{5} \int_{0}^{5}\left(t^{3}-7 t^{2}+17 t+190\right) d t \\
& \frac{1}{5} * \text { Integral }[f, 0,5]=205.4167
\end{aligned}
$$

$$
\left[\begin{array}{ll}
a & b \\
0 & 5
\end{array}\right]
$$

** Find the area between the functions $f(x)=3 x^{2}+2$ and $g(x)=x-3$ on the inters: $1-1 \leq x \leq 3$.
(1) graph
(2) set updetinite integral
(3) a newer

Integral Between $[f, g,-1,3]=44$

$$
\begin{aligned}
& \int_{-1}^{3}\left[\left(3 x^{2}+2\right)-(x-3)\right] d x \\
& \int_{-1}^{3}\left(3 x^{2}-x+5\right) d x
\end{aligned}
$$

Review Example 38: Find the area of the region that is completely enclosed by the graphs of the functions $f(x) \stackrel{39 .}{=} x^{2}-3 x$ and $g(x)=1.6 x$.
(1) graph
(2) Find pts. of intersection

$$
\text { Intersect }[f, g] \quad x=0 \quad x=4.4
$$

(3) $\int_{0}^{4 . L}$

$$
\left[1.6 x-\left(x^{2}-3 x\right)\right] d x=\int_{0}^{4.6}\left(4.6 x-x^{2}\right) d x
$$

(4) answer Integral Between $[g, f, 0$,
Review Example ${ }^{40}$: Suppose $f(x, y)=3 x^{2} y-4 x y+6$. Compute

$$
4.10=16.2227
$$

$$
\begin{aligned}
& f(x, y)=3 x^{2} y-4 x * y+6 \\
& f(0,0)=6 \\
& f(2,-1)=2 \\
& f(-1,-3)=-15
\end{aligned}
$$

Review Example. Find the domain: $f(x, y)=\frac{x+5 y}{2 x-y}$

$$
\begin{aligned}
& \left.\begin{array}{l}
2 x-y \neq 0 \\
2 x \neq y
\end{array}\right) y \pm 2 x \\
& \{(x, y) \mid y \neq 2 x\}
\end{aligned}
$$

42
Review Example : Find the first partial derivatives of the function

$$
f(x, y)=5 x^{2} y^{2}-2 x^{3} y+9 x^{2}-14 y^{2}+10 .
$$

Derivative $[f, x] \quad f_{x}=a(x, y)=-6 x^{2} y+10 x y^{2}+18 x$
Derivative $[f, y]$

$$
f_{y}=b(x, y)=-2 x^{3}+10 x^{2} y-28 y
$$

43
Review Example: Find the second-order partial derivatives of the function $f(x, y)=3 x^{2}-x^{3} y^{3}+5 x y+6 y^{3}$.

Derivative $[f, x] \quad f_{x}=6 x-3 x^{2} y^{3}+5 y \quad a(x, y)$
Derivative $[f, y] \quad f_{y}=-3 x^{3} y^{2}+5 x+18 y^{2} \quad b(x, y)$
Derivative $[a, x] \quad f_{x x}=6-4 y^{3}$
Derivative $[b, y] \quad f_{y y}=$
Derivative $[a, y]$

$$
f_{x y}=-9 x^{2} y^{2}+5
$$

Review Example 40: Evaluate the first and second-order partial derivatives of $f(x, y)=3 x^{2}-x^{3} y^{3}+5 x y+6 y^{3}$ at the point $(1,2)$.

$$
F_{y} l_{(1,2)}=65
$$

$$
f_{x \times\left.\right|_{(1,2)}}=-42
$$

$$
\left.f_{x_{y}} \mid(1,2)=-3\right)
$$

$$
F_{y y} I_{(1,2)}=60
$$

$$
\left.f_{y_{x}}\right|_{(1,2)}=-31
$$

$$
\begin{aligned}
& a(1,2)= \\
& b(1,2) \\
& c(1,2) \\
& d(1,2) \\
& e(1,2) \\
& g(1,2)
\end{aligned}
$$

45 Find the relative extrema of the function
Review Example : Find

$$
f(x, y)=x^{2}+2 x y+2 y^{2}-4 x+8 y-1 .
$$

(1)

$$
\begin{aligned}
& f_{x}=a(x, y)=2 x+2 y-4 \\
& f_{y}=b(x, y)=2 x+4 y+8
\end{aligned}
$$

(3) Second order partials

$$
\begin{gathered}
\rightarrow f_{x x}=\operatorname{Dervi}[a, x]=2>0 \\
f_{x y}=\operatorname{Deiv}[a, y]=2 \\
f_{y y}=\operatorname{Deriv}[b, y]=4 \\
f_{y x}=\operatorname{Deriv}[b, x]=2
\end{gathered}
$$

(2) Find critial points
c: $2 x+2 y-4=0$
d: $2 x+4 y+8=0$

$$
\text { Interset }[c, d]=(8,-6)
$$

(4) Find $D=f_{x x} \cdot f_{y_{y}}-\left(f_{x y}\right)^{2}$

$$
D=2.4-2^{2}=8-4=4>0
$$

(5) use 4 bullets
we have arelative min
(6) rel min $f(8,-6)=G 43$
※ \neq Review Example 46 : Find the relative extrema of the function $f(x, y)=x^{3}-2 x y+y^{2}+5$.
(1)

$$
\begin{aligned}
& f_{x}=3 x^{2}-2 y \\
& f_{y}=-2 x+2 y
\end{aligned}
$$

(4)

$$
\begin{aligned}
& \text { test }\left.(0,0) \quad f_{x x}\right|_{(0,0)}=6(0)=0 \\
& D(0,0)=0 \cdot 2-(-2)^{2}=0-4=-4
\end{aligned}
$$

$D<0$
saddle point
Intersect $[c, d]$
C riticel pts $(0,0) \quad\left(\frac{2}{3}, \frac{2}{3}\right)$
(3) Ind order partials

$$
\Rightarrow \begin{array}{ll}
f_{x x}=6 x & f_{y y}=2 \\
f_{x y}=-2 & f_{y x}=-2
\end{array}
$$

$$
D>0 \quad f_{x x}>0
$$

(5) bullets
relative min
(b) $f\left(\frac{2}{3}, \frac{2}{3}\right)=G G B$

