Math 1314 ONLINE

Alternate Assignment 4
Record your answers to these questions on the Alternate Assignment 4 answer sheet and upload your answers to the Alternate 4 slot on the "Assignments" tab at casa.uh.edu. This assignment is due on Saturday, February 9, 2013, at 11:59 p.m. All work must be submitted electronically. Late work will not be accepted.

1. What is the form $\frac{0}{0}$ called?
2. Suppose you want to find $\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x^{2}-1}$. Describe the procedure that you could use to find the limit. Then state the answer.
3. Find the limit: $\lim _{x \rightarrow 0} \frac{\sqrt{x+16}-4}{x}$.
4. Find the limit: $\lim _{x \rightarrow \infty} \frac{x^{2}-6 x+8}{2 x^{2}-8}$
5. Find the limit: $\lim _{x \rightarrow \infty} \frac{3 x}{3 x^{2}-27}$
6. We sometimes write the answer to a limit at infinity problem as infinity or negative infinity. What does this mean?
7. If $f(x)=x^{5}-7 x^{3}+8 x-6$, what is the degree of the polynomial?
8. Explain why $\lim _{x \rightarrow 3} \frac{x^{2}-4 x+5}{x^{2}+2 x+7}$ is not equal to 1 .
9. If $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)$, what do you know about $\lim _{x \rightarrow a} f(x)$?
10. If $f(x)=\left\{\begin{array}{ll}2 x+5, & x>1 \\ 4 x-3, & x \leq 1\end{array}\right.$, find $\lim _{x \rightarrow 1^{-}} f(x), \lim _{x \rightarrow 1^{+}} f(x)$ and $\lim _{x \rightarrow 1} f(x)$.
11. Evaluate $\lim _{x \rightarrow \infty} \frac{123500}{x}$.
12. Name three types of discontinutites.
13. Suppose $f(0)=6$ and $\lim _{x \rightarrow 0} f(x)=3$. Is f continuous at $x=0$? Explain your answer.
14. Write $x \leq-1$ using interval notation.
15. State the intervals on which $f(x)=6 x^{3}-8 x^{2}+11 x+9$ is continuous.
16. Suppose $f(x)=3 x^{2}+4 x-5$. Find $f(x+h)$.
17. Suppose $f(x)=3 x^{2}+4 x-5$. Find $f(x+h)-f(x)$.
18. Suppose $f(x)=3 x^{2}+4 x-5$. Find $\frac{f(x+h)-f(x)}{h}$.
19. Suppose $f(x)=3 x^{2}+4 x-5$. Find $\lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right)$.
20. Suppose $f(x)=3 x^{2}+4 x-5$. Find $f^{\prime}(-3)$.
