1. Suppose $f(x)=\frac{2 x^{2}-9 x+12}{5 x^{2}+6}$. Find the zeros of the function.
2. Suppose $f(x)=0.086 x^{3}-1.286 x^{2}+5$. Find all relative extrema.
3. Suppose $f(x)=0.086 x^{3}-1.286 x^{2}+5$ and $g(x)=1.686 x^{2}+2.784 x-3.127$. Find the x and y coordinates of any points of intersection.
4. Suppose $f(x)=2 x e^{-x^{2}}-0.28 x$. Find all zeros.
5. Suppose $f(x)=2 x e^{-x^{2}}-0.28 x$. Find all relative extrema.
6. Suppose $f(x)=2 x e^{-x^{2}}-0.28 x$ and $g(x)=4.29-0.56 x^{2}$. Find the x and y coordinates of any points of intersection.

For problems 7 - 15 use this data set. Using the Spreadsheet View of GGB, enter the data and create a list.

x	0	4	7	8	11	14
y	18	16	19	22	28	26

7. What is the linear regression model for this data set?
8. What is the value for r^{2} for the linear regression model?
9. What is the quadratic regression model for this data set?
10. What is the value for R^{2} for the quadratic regression model?
11. What is the cubic regression model for this data set?
12. Use the cubic regression model to predict the y value when $x=20$.
13. What is the exponential regression model for this data set?
14. Use the exponential regression model to predict the y value when $x=20$.
15. What is the result when you find the power regression model? Why?
16. The table shown below gives a company's monthly costs to produce its best-selling product. Using the data, find the quadratic, cubic, quartic and exponential regression models and find the value for R^{2} for each regression. What is the largest R^{2} value among the four that you found. (Note, you do not need to state all of the regression models. The answer to this question is the largest value for R^{2}.)

Month	1	2	3	4	5	6
Costs in thousands of dollars	128	137	146	142	148	144

17. Using the regression model that has the largest value for R^{2}, find the cost in month 9 . Is this model a good choice to predict future values? Why?
18. Using the graph shown below, find $\lim _{x \rightarrow 0} f(x)$ if it exists.

19. In what two situations did we see that a limit can fail to exist?
20. Suppose you want to find $\lim _{x \rightarrow 2} f(x)$. As x gets close to 2 with values that are smaller than 2, y gets close to 5 ; and as x gets close to 2 from with values that are larger than 2 , y gets close to 6 . What conclusion can you draw?
