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2. Fundamental theorem of calculus. 
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3. Basic Integration. 
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4. Area. Graph each region and find the requested area. 

a. Find the area bounded by the graph of   21f x x   and the x-axis over the interval  

[-1,1]. 

b. Find the area bounded by the graph of   1 xf x e   and the x-axis over the interval 

[0,1]. 

c. Find the area bounded by the graph of    sinf x x  and the x-axis over the interval 

 / 2,  . 

d. Give the area bounded between the x-axis and the graph of   2 2 3f x x x    over the 

interval [-2,2]. 

  





5. Anti-derivatives. 

a. Give the general anti-derivative for 3( ) 2g x x x x   . 

b.  F x  is the anti-derivative for the function 2 3x x   that satisfies  1 2F   . Give
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