1. Set \(f(x) = 4x^2 - x^3 \), and let \(\mathcal{L} \) be the line \(y = 18 - 3x \), where \(\mathcal{L} \) is tangent to the graph of \(f \). Let \(S \) be the region bounded by the graph of \(f \), the line \(\mathcal{L} \) and the \(x \)-axis. The area of \(S \) is:

\[
\int_{x_1}^{x_2} (4x^2 - x^3) - (18 - 3x) \, dx
\]

(a) Show that \(\mathcal{L} \) is tangent to the graph of \(f \) at the point \(x = 3 \).

(b) Find the area of \(S \).

(c) Find the volume of the solid generated when \(R \) is revolved about the \(x \)-axis.

2. A tank contains 125 gallons of oil at time \(t = 0 \). During the time interval \(0 \leq t \leq 12 \), oil is pumped into the tank at the rate

\[
H(t) = 2 + \frac{10}{1 + \ln(t + 1)} \text{ gallons per hour.}
\]

During the same time interval, oil is being removed from the tank at the rate

\[
R(t) = 12 \sin \left(\frac{t^2}{47} \right) \text{ gallons per hour.}
\]

(a) How many gallons of oil are being pumped into the tank during the time interval \(0 \leq t \leq 12 \)?

(b) Is the level of oil in the tank rising or falling at time \(t = 6 \) hours. Give a reason for your answer.

(c) How many gallons of oil are in the tank at time \(t = 12 \) hours?

(d) At what time \(t \), for \(0 \leq t \leq 12 \), is the volume of oil in the tank the least? Justify your conclusion.
3. A particle moves along the x-axis so that its velocity v at time t, for $0 \leq t \leq 5$, is given by

$$v(t) = \ln(t^2 - 3t + 3).$$

The particle is at the point $x = 8$ at time $t = 0$.

(a) Find the acceleration of the particle at time $t = 4$.

(b) Find all the times in the open interval $0 < t < 5$ at which the particle changes direction. During which time intervals, for $0 < t < 5$, does the particle travel to the left?

(c) Find the position of the particle at time $t = 2$.

(d) Find the average speed of the particle over the interval $0 \leq t \leq 2$.

4. The graph of the function \(f \) consists of three line segments.

(a) Let \(g \) be the function defined by \(g(x) = \int_{-4}^{x} f(t) \, dt \). For each of \(g(-1) \), \(g'(-1) \), and \(g''(-1) \) find the value of state that it does not exist.

(b) For the function \(g \) given in part (a), find the \(x \)-coordinate of each point of inflection of the graph of \(g \) on the open interval \(-4 < x < 3\). Explain your reasoning.

(c) Let \(h \) be the function defined by \(h(x) = \int_{x}^{3} f(t) \, dt \). Find all the values of \(x \) in the closed interval \(-4 \leq x \leq 3\) for which \(h(x) = 0 \).

(d) For the function \(h \) given in part (c), find all the intervals on which \(h \) is decreasing. Explain your reasoning.

5. Consider the curve given by \(y^2 = 2 + xy \).

(a) Show that \(\frac{dy}{dx} = \frac{y}{2y - x} \).

(b) Find all the points on the curve where the line tangent to the curve has slope \(\frac{1}{2} \).

(c) Show that there are no points \((x, y)\) on the curve where the line tangent to the curve is horizontal.

(d) Let \(x \) and \(y \) be functions of time \(t \) that are related by the equation \(y^2 = 2 + xy \). At time \(t = 5 \), the value of \(y \) is 3 and \(\frac{dy}{dt} = 6 \). Find the value of \(\frac{dx}{dt} \) at time \(t = 5 \).
6. Let f be the function defined by

$$f(x) = \begin{cases} \sqrt{x+1}, & 0 \leq x \leq 3 \\ 5 - x, & 3 < x \leq 5 \end{cases}.$$

(a) Is f continuous at $x = 3$? Explain why or why not.

(b) Find the average value of f on the closed interval $0 \leq x \leq 5$.

(c) Suppose that g is the function defined by

$$f(x) = \begin{cases} k\sqrt{x+1}, & 0 \leq x \leq 3 \\ mx + 2, & 3 < x \leq 5 \end{cases},$$

where k and m are constants. If g is differentiable at $x = 3$, what are the values of k and m?