Translations with Patty Paper

FIG. 1

FIG. 2

FIG. 3

Instructions:

1. Draw two parallel lines on a piece of patty paper as shown above and label L_{1} and L_{2}.
2. Draw a scalene triangle in the top left hand corner and label ABC (clockwise).
3. Fold the patty paper along L_{1} so that triangle $A B C$ is on the outside. Trace the image of triangle $A B C$ on the opposite side of the paper and label $A^{\prime} B^{\prime} C^{\prime}$.
4. Fold the patty paper along L_{2} so that triangle $A^{\prime} B^{\prime} C^{\prime}$ is on the outside. Trace the image of triangle $A^{\prime} B^{\prime} C^{\prime}$ on the opposite side of the paper and label $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

Observations:

5. How do triangle $A B C$ and triangle $A^{\prime} B^{\prime} C^{\prime}$ compare? What stayed the same? What changed?
6. How do the measures of corresponding angles compare? corresponding sides?
7. Draw a segment from A to $A^{\prime \prime}, B$ to $B^{\prime \prime}$, and C to $C^{\prime \prime}$. How do the lengths of these segments compare? What is the relationship among these segments? How do you know?
8. How do the perimeters of triangle $A B C$ and triangle $A " B " C$ " compare?
9. How do the areas of these triangles compare?
10. What properties have been preserved in this transformation?
11. How would you describe a reflection with respect to two parallel lines?
