Rotations with Patty Paper

Instructions:

1. Draw two intersecting lines on a piece of patty paper as shown above in figure 1. Also draw a quadrilateral in the left section of the paper.
2. Reflect the quadrilateral over line L_{1} as shown in figure 2 above.
3. Reflect this image line L_{2} as shown in figure 3 above.
4. Use a protractor and measure $\angle 1$.
5. Connect the point of intersection of L_{1} and L_{2} to the vertex of the right angle of the original quadrilateral in figure 3 . Label this vertex point P.
6. Place a second piece of patty paper on top of the first so that the sides match.
7. Trace L_{1}, L_{2}, the original quadrilateral, and the segment drawn in \#5 onto the top sheet of patty paper.
8. With the end of a sharp pencil on point O, rotate the top sheet until the quadrilateral coincides with its final image.
9. Connect O to the vertex of the right angle (final image) on the first sheet of patty paper. Label the vertex of the final image point P^{\prime}.

Observations:

10. What has changed from the pre-image to the image in this rotation? What has remained the same?
11. Use a protractor to measure $\angle \mathrm{POP}$ ' and $\angle 1$. How do these measures compare?
12. Make a conjecture about the angle of rotation ($\angle \mathrm{POP}$ ') and the angle formed by the two intersecting lines L_{1} and L_{2}.
13. What properties have been preserved with rotation?
14. Is a rotation an isometry? Explain.
15. How would you describe a rotation based upon this exploration?
