Rotations with Patty Paper

Instructions:

- 1. Draw two intersecting lines on a piece of patty paper as shown above in figure 1. Also draw a quadrilateral in the left section of the paper.
- 2. Reflect the quadrilateral over line L_1 as shown in figure 2 above.
- 3. Reflect this image line L_2 as shown in figure 3 above.
- 4. Use a protractor and measure $\angle 1$.
- 5. Connect the point of intersection of L_1 and L_2 to the vertex of the right angle of the original quadrilateral in figure 3. Label this vertex point P.
- 6. Place a second piece of patty paper on top of the first so that the sides match.
- 7. Trace L₁, L₂, the original quadrilateral, and the segment drawn in #5 onto the top sheet of patty paper.
- 8. With the end of a sharp pencil on point O, rotate the top sheet until the quadrilateral coincides with its final image.
- 9. Connect O to the vertex of the right angle (final image) on the first sheet of patty paper. Label the vertex of the final image point P'.

Observations:

- 10. What has changed from the pre-image to the image in this rotation? What has remained the same?
- 11. Use a protractor to measure $\angle POP'$ and $\angle 1$. How do these measures compare?
- 12. Make a conjecture about the angle of rotation ($\angle POP'$) and the angle formed by the two intersecting lines L₁ and L₂.
- 13. What properties have been preserved with rotation?
- 14. Is a rotation an isometry? Explain.
- 15. How would you describe a rotation based upon this exploration?