
MEASUREMENT 
 

Introduction:  People created systems of measurement to address practical problems 
such as finding the distance between two places, finding the length, width or height of a 
building, finding the area of a plot of land, finding the capacity of a container, and 
finding the weight of food products.  They constructed calendars to measure the passage 
of time. 
 
      Every measurement requires a unit of measure.  In ancient times, people used body 
measurements as units of length, seeds and stones as units of weight, and the cycles of the 
sun and moon as units of time.  Today there are two systems of measurement in common 
use, the metric system and the customary system, also called the British system or the old 
English system.  Since England and the United States use slightly different liquid 
measures, the customary system is sometimes called the American/British system  
 
      Most countries in the world use the metric system.  Australia and the United States 
are the exceptions; both use the customary system.  Beginning with the “space age” in the 
early 1960’s there have been attempts to convert the United States to the metric system 
but these have not been successful.  However, there are areas where the metric system is 
used widely in the United States, most notably in the sciences. 
 
Nonstandard Units of Measurements.   
 
Historical records indicate that the first units of length were based on people’s hands, feet 
and arms.  The measurements were: 
 

1. One hand – the width of an adult’s hand.  Today this unit of measurement is 
taken to be 4 inches and it is used to measure the height of horses. 

2. One foot – the length of an adult’s foot. 
3. One cubit – the length of an adult’s forearm, measured from the elbow to 

fingertip. 
 
      While these units were readily available, there were obvious disadvantages – different 
people have different-sized hands, feet and arms.  The lack of uniformity in these 
measurements probably resulted in choosing one individual (e.g.  a national ruler) and 
specifying the width of that person’s hand, or the length of the foot or arm as the 
“standard” unit of length.  This “unit” length could then be transferred to a surface and  
reproduced. 
 
Standard Units of Measurement. 
 
The customary (British) system:  The customary system was actually developed from 
nonstandard units.  One inch was the length of three barleycorns placed end to end, the 
foot was the length of an adult’s foot, and the yard was the distance from the tip of a 
person’s nose to the end of an outstretched arm.  The “foot” was standardized in the late 
18th century and the inch, the yard and the mile were defined in terms of a foot. 



 
 
 

The metric system:  The metric system was developed in France in the 18th century.  The 
word “metric” comes from the Latin word “metricus” or from the Greek word “metron,” 
both meaning measure.  The metric system is based on the meter.  Originally the meter 
was intended to be 1/10,000,000 of the distance measured on the earth’s surface from the 
equator to the North Pole.  However, in spite of careful surveying, the accuracy of that 
computation was sufficiently doubtful to cause the legal definition of the meter to be 
changed to the length of a certain platinum bar kept in Paris.  Because the length of a 
metal bar is subject to variations in its environment (e.g., the temperature), the meter 

today is defined to be the distance light travels in a vacuum in 
458,792,299

1  seconds. 

 
     The advantages of the metric system over the customary system are:  (1)  all 
conversions within the system are based on powers of 10; it is a decimal system; and (2)  
the metric prefixes are the same for length, liquid volume and weight.  The prefixes are: 
 
Prefix kilo- hecto- deka-  deci- centi- milli- 
Meaning 1000 100 10 1 1/10 1/100 1/1000 
 

 
Basic units and conversion factors:  The basic units for the measurement of length and 
the measurement of liquids in the customary and metric systems, and the conversions 
between the two systems are given in the following tables. 
 
 

Linear Measure 
Customary System Metric System Conversion Table
12 inches (in) = 1 foot (ft) 10 millimeters (mm)=1 centimeter (cm) 1 cm = 2.54 in 
3 feet = 1 yard (yd) 10 centimeters = 1 decimeter 0.33937 in = 1cm 
5 ½ yards = 1 rod 10 decimeters = 1 meter (m) 1 ft = 0.3048 m 
5, 280 feet = 1 mile ( mi) 10 meters = 1 dekameter 1 m = 3.28 ft 
 1,000 meters = 1 kilometer (km) 1 mi = 1.609 km 
  0.621 mi = 1 km 
 
 

Liquid Measure 
Customary System Metric System Conversion Table
16 ounces (oz) = 1 pint (pt) 10 milliliters (ml) = 1 centiliter (cl) 1 oz = 2.9573 cl 
2 cups = 1 pint 100 centiliters = 1 liter (l) 1 cl = 0.3382 oz 
2 pints = 1 quart (qt) 1,000 liters = 1 kiloliter (kl) 1 qt = 0.9463 l 
4 quarts = 1 gallon (gal)  1 l = 1.0567 qt 
  1 gal = 0.0038 kl 
  1 kl = 264.179 gal 



 
 
Weight vs Mass:  People confuse mass and weight.  Mass measure the quantity of matter 
that a body contains.  Weight measures the force of gravity on a body.  As a simple 
illustration of the difference, a man who weighs 180 pounds here on earth has a mass of 
82 kilograms.  The force of gravity on the moon is 1/6 the force of gravity on the earth.  
Therefore, on the moon, the man would weigh 30 pounds, but his mass is still 82 
kilograms.  The relationship between weight (w) and mass (m) is: 
 

   
g
wm =  

 
where  g  is the acceleration due to gravity;  g  is approximately 32 ft/sec2  on the earth. 
Although we will not use it here, the basic unit of mass in the customary system is the 
slug; 1 slug = 32 pounds. 
 
     The basic units for the measurement weight/mass in the customary and metric 
systems, and the conversions between the two systems are given in the following table. 
 

Weight/Mass 
Customary System Metric System Conversion Table 
16 ounces (oz) = 1 
pound (lb) 

10 milligrams (mg) = 1 
centigram (cm) 

1 oz = 28.3495 g 

2000 pounds (lbs) = 1 
ton 

10 centigrams = 1 decigram 
(dg) 

1 g = 0.0353 oz 

 10 decigrams = 1 gram (g) 1 lb = 0.4536 kg 
 1000 grams = 1 kilogram (kg) 1 kg = 2.2046 lbs 
 1000 kilograms = 1 metric ton 1 ton = 0.9072 metric tons 
  1 metric ton = 1.1023 tons 
 
 
Time:  The basic unit of time is the second.  This is the unit used independent of the 
choice of the customary or metric system for measuring length, liquids or weight. 
 
     The solar “clock” was originally used to define the second.  A “solar day” is the 
interval of time that elapses between two successive crossings of the same meridian by 
the Sun at its highest point in the sky at that meridian.  By this measure, a second was 
defined to be 1/86,400 of a solar day.  However, variations in the elliptical path of the 
earth around the sun cause solar days to vary in length.  In 1967, an atomic standard was 
adopted as a more precise unit of measure.  The atomic “clock” keeps time with an 
accuracy of about 3 millionths of a second per year. 
 
 
Precision, Significant Figures, Error 
 



Precision:  In discussing measurement we need to distinguish between two types of 
numbers.  Exact numbers are numbers without any uncertainty or error.  The number  2  
in the equation  r = d/2  which relates the radius and diameter of a circle, and the number 
0.06 in the equation  )06.01()( tPtA +=  which gives the amount of money in an account 
earning simple interest at 6% on a principal  P , are examples of exact numbers.  In 
contrast, measured numbers, or measured quantities, are numbers arising from some 
measurement process.  Measured numbers by their very nature involve some degree of 
uncertainty or error.  For example, if a man states that his height is 5 feet 11 inches, he 
does not mean that his height is exactly 5 feet 11 inches (although, by chance, it may be), 
he means that within the accuracy of the measuring device (say a tape measure) his 
height is 5 feet 11 inches to the nearest inch.   
 
Example:  Measure the length of an 8 ½  by 11 sheet of paper to: 
a. The nearest centimeter. 
b. The nearest millimeter. 
 
Our results are:  to the nearest centimeter:  28 cm; to the nearest millimeter: 279.5 mm.  
 
  
     The precision of a measurement is determined by the smallest unit of measurement 
used.  To the nearest foot, the man’s height is 6 feet; to the nearest inch, his height is 5 
feet 11 inches.  The latter is a more precise measurement.  In the case of the metric length 
of an 8 ½  by 11 sheet of paper, 279.5 mm is a more precise measurement than 28 cm. 
 
Significant figures:   The degree of accuracy of a measured quantity depends on the 
measuring scale of the instrument used to make the measurement.  The more finely 
divided the scale, the more accurate the measurement.  For example, using the centimeter 
scale on our ruler, we found that the length of our 8 ½ by 11 sheet of paper was 28 
centimeters; using the millimeter scale, we found that the length was 279.5 millimeters. 
The millimeter scale provides more significant figures and a greater degree of accuracy. 
 
     The number of significant figures (also called significant digits) of a measured 
quantity is the number of reliably known digits it contains.  In our sheet of paper 
example, 28 cm has two significant figures and 279.5 mm has four significant figures.  
Confusion sometimes arises when a quantity contains one or more zeros.  For example, 
how many significant figures does  0.0376 cm have?  What about  203.5 m  or   
5725.0 m?  The conventions concerning significant figures and zeros are as follows: 
 

1. Zeros at the beginning of a number are not significant; they merely locate the 
decimal point.   

 
0.0376 cm   has three significant figures  (3, 7, 6) 

  
2. Zeros within a number are significant. 

 
203.5 m  has four significant figures  (2, 0, 3, 5) 



 
3. Zeros at the end of a number after the decimal point are significant. 

 
5725.0 m  has five significant figures  (5, 7, 2, 5, 0) 

 
4. Zeros at the end of a whole number are not significant. 

 
5500 kg  has two significant figures  (5, 5) 

 
     Unfortunately, there is no general consensus on #4.  Using the number 5500 kg, for 
example, we don’t know whether the measurement was made to the nearest hundred feet, 
to the nearest ten feet, or even to the nearest foot.  In contrast to the convention above, 
some authors take the opposite view and state that zeros at the end of a whole number are 
significant.  

 
It is important to express the results of mathematical operations with the proper 

number of significant figures.  If a mathematical operation involves multiplication or 
division then: 

 
The final result should have the same number of significant figures as the quantity 
with the least number of significant figures that was used in the calculation. 

 
Rounding:  The rules for rounding off numbers are as follows: 
 

1. If the next digit after the last significant figure is 5 or greater, the last 
significant figure is increased by 1. 

2. If  the next digit after the last significant figure is less than 5, the last 
significant figure is left unchanged. 

 
      For multiple operations involving multiplication and/or division, rounding off to the 
proper number of significant figures should not be done at each step since rounding errors 
may accumulate.  Rounding off should be done on the final result. 
 
Examples: 
 
1. Multiplication: 
 

3.6 m  ×  2.71 m (= 9.756 m2) = 9.8 m2   (rounded to 2 sf) 
(2 sf)       (3 sf) 
 

2.  Division: 
 

  (4 sf) 

sf) 3  to(rounded   ft/sec 365ft/sec) 44.365(
sec1.25

ft8.456
==  

   (3 sf) 



 
     If a mathematical operation involves addition or subtraction, then: 
 

The final result should have the same number of decimal places as the quantity 
with the least number of decimal places that was used in the calculation. 
 

In contrast to multiplication and division, this rule should be applied by rounding off the 
numbers to the least number of decimal places before adding or subtracting. 
 
Example: 
 
   32.2     32.2 
    1.723                 →     1.7 
  12.57             (rounding off)             12.6 
       46.5 
 
 
Absolute error:  In making a measurement it is understood that the result is reported as 
“accurate” to the nearest unit being used in the measurement.  For example, if a man says 
that he weighs 182 lbs that implies that his weight is 182 lbs to the nearest pound.  We 
can conclude, therefore, that his weight is greater than or equal to 181.5 and is less than 
182.5; that is, his weight is a number in the interval  [181.5, 182.5).  The greatest possible 
error, or absolute error, in measuring the man’s weight is 0.5 lbs.   
 
     In general, in making a measurement, the absolute error is half of the smallest unit 
used in the measurement. 
 
Examples: 
 

1. A man’s shoe size is measured to be 29.3 cm.  The smallest unit of measurement 
is one-tenth of a centimeter.  His actual shoe length is between 29.25 cm and 
29.35 cm (including 29.25 cm).  The absolute error is 0.05 cm. 

 
2. A skyscraper is reported to be 980 feet tall.  The smallest unit of measurement is 

10 feet; by our convention 980 has two significant figures.  The actual height of 
the building is between  975 ft and 985 ft (including 975 ft).   The absolute error 
is 5 ft. 

 
Relative error:  In the examples above, the possible error in measuring the man’s shoe 
was 0.05 cm; the possible error in measuring the height of the building is 5 feet.  Which 
of these is more significant?  The relative error of a measurement addresses this question.  
 
      The relative error of a measurement is the absolute error divided by the 
measurement. 
 
Examples:  Continuing with the examples above, 



 

1.  Relative error 0.17%.or     0017.0
3.29

05.0
tmeasuremen

error  absolute
===  

 

2. Relative error 0.51%or    0051.0
980

5
= . 

 
3. If the building’s height was reported to be  982 feet tall, then the smallest unit of 

measure is 1 foot, the building’s height is between 981.5 and 982.5 feet tall, and the 
absolute error 0.5 feet.  In this case, we have 

 

Relative error 0.05%or     0005.0
982

5.0
== . 

 
  
Dimensional Analysis and Unit Analysis. 
 
The basic quantities used in physical descriptions are called dimensions.  For example, 
time, length, and mass are dimensions.  If you measure the length of one side of a 
building, you could express the result in feet, or in meters, or in yards.  Regardless of 
which unit of measure your use, the quantity has the dimension of “length.” 
 
      We’ll express dimensional quantities by symbols such as [T] for time, [L] for length, 
[M] for mass, and [C] for liquid measure.  Derived quantities are a combination of 
dimensions.  Some standard examples are: 
 
  Area has dimensions:   [L] × [L] = [L2] 
 
The units of square measure in the customary and metric systems are: 
 
                    Customary System 
   144 square inches = 1 square ft  
          9 square feet = 1 square yd 
     160 square rods = 1 acre 
 4840 square yards = 1 acre 
               640 acres = 1 square mi 

   
                  Metric system  
100 square millimeters = 1 square cm 
 100 square centimeters = 1 square dm 
 100 square decimeter = 1 square m 
 10,000 square centimeters = 1 square m 

 
  Volume has dimensions:   [L] × [L] × [L] = [L3] 
 
Some units of cubic measure in the customary and metric systems are: 
 
                           Customary System 
       1728 cubic inches = 1 cubic ft 
                 27 cubic feet = 1 cubic yd 
 
   

                   Metric System 
1000 cubic millimeters = 1 cubic cm  
1000 cubic centimeters = 1 cubic dm 
1000 cubic decimeters = 1 cubic m 



 Since  distance = velocity × time, 

  velocity has dimensions:   [L]
[T]

. 

 
 Since  velocity  = acceleration × time, 

  acceleration  has dimensions:   
][T

[L]
[T]

[L]/[T]
2=  

 
 
     It is important to understand that addition and subtraction of quantities can only be 
done when the quantities have the same dimensions. 
 
 
Examples:   
 
1.  10 m + 20 m = 30 m      which in terms of dimensions is      [L] + [L] = [L] 
      is correct. 
 
2.  20 sec – 10 sec = 10 sec      which in terms of dimensions is      [S] – [S] = [S] 
     is correct. 
 
3.  20 ft  + 10 qts      which in terms of dimensions is  [L] + [C].  This makes no sense. 
 
 
Dimensional analysis:  Dimensional analysis is a procedure for checking the 
dimensional consistency of an equation.  Recall that an equation is a mathematical 
equality.  Since physical quantities in an equation have both a numerical value and a 
dimension, the two sides of the equation must be equal not only in numerical value but 
also in dimension.  For this purpose, dimensions can be treated as algebraic quantities.  
That is, they can be added or subtracted as indicated above, and they can be multiplied 
and divided, as we did in the case of area, volume, velocity and acceleration. 
 
Examples: 
 
1.    10 ft × 12 ft = 120 ft2 

      and   
 [L] × [L] = [L2] 

 
2.    20 mi/hr × 2 hr = 40 mi 
      and 

  [L].[T]
[T]
[L]

=×  

 
Both sides of these equations are equal, numerically and dimensionally. 
 



 
      A principal use of dimensional analysis is checking whether an equation that has been 
derived or is being used to solve a problem has the correct form; that is, has the correct 
dimensions. 
 
Examples: 

1.  Is the equation  
6

2dV π
= ,  where  V  is the volume and  d  is the diameter of a sphere, 

dimensionally correct? 
 
2.  Is the equation  0 0x x v t= + ,  where 0 0 and    are lengths,    is velocity, x x v and  t   is 
time, dimensionally correct? 
 
Solutions: 
 
1.  ][L ][L 23 ≠ ;  the equation is not correct; the dimensions are not equal.  The correct 

formula is  
6

3dV π
= . 

 

2.  [L][L] [L] + [T] [L] + [L] = [L]
[T]

= × = ;  the equation is dimensionally correct. 

 
 
Unit analysis:  In checking an equation for dimensions it is often more convenient to use 
the actual units rather than the symbols  [T], [L], etc.  This variation of dimensional 
analysis is called unit analysis.  The following examples illustrate the unit analysis 
approach. 
 
Examples: 
 
1.  Suppose that  x  and  x0  are measured in meters,  v0  is measured in meters per second, 
and  t  is measured in seconds.  Use unit analysis to show that the equation 
 

0 0x x v t= +  
 

is dimensionally correct. 
 

2.  Is the equation  
2
vx
a

=   where  x   is measured in yards,  v  in feet/sec, and   a  in 

ft/sec2 dimensionally correct?   
 
 
 
 



Solutions: 
 
1. The equation is  tvxx 00 += .  Inserting units for the physical quantities, we get 
 

    or            mmms
s
mmm +=⎟
⎠
⎞

⎜
⎝
⎛+= (dimensionally correct) 

 

2. The equation is  .
2a
vx =   If we insert units for the physical quantities, we get 

 

.or          
/
/ 2

2 sms
m
s

s
m

sm
smm ==×==  

 
      The equation is not correct.  We could have arrived at the same conclusion using 
dimensional analysis: 
 

[T]
[L]

][T
[T]
[L]

][L]/[T
[L]/[T][L]

2

2 =×==  

 
      The next example illustrates an advantage of unit analysis over dimensional analysis. 
 
Example:  Given the equation  2

00 attvxx ++=   where  x  and  x0  are measured in feet,  
v0  is measured in meters per sec,  a  is measured in meters per sec2 ,  and  t  is measured 
in seconds.   
 
1. Use dimensional analysis to check the equation. 
 
2. Use unit analysis to check the equation. 
 
Solution: 
 
1. In terms of dimensions, the equation is: 
 

[L].[L]L][][T
][T

[L][T]
[T]
[L][L][L] 2

2 ++=×+×+=  

 
      The equation is dimensionally correct. 
 
2. Inserting units for the physical quantities, we get 
 

mmft
s
m

s
mftft 2

2 ++=×+×+= ss . 

 



While dimensionally correct, the “equation” doesn’t make sense because the terms on 
the right cannot be added without first changing the one of the units of measurement 
to the other – feet to meters or meters to feet. 
 

     Unit analysis also provides a convenient way to convert between units of 
measurement.   

 
Examples: 

 
1.  Convert 450 centimeters to meters. 
 
2.  Convert 3 gallons to quarts. 
 
3.  Convert 5 feet to centimeters 
 
3. Convert 1500 meters to miles. 
 
Solutions: 
 
We use the conversion tables given above. 
 

1.  From the table, 1 m = 100 cm.  Therefore,  1
cm100

m1
=   and 

 

m 3.5m
100
350

cm100
m 1 cm 3501  cm 350cm 350 ==×=×=  

 

2.  From the table,  1 gal = 4 qts.  Therefore,   1
gal 1
qts 4

=   and 

 

qts. 12
gal 1
qts 4gal 31 gal 3  gal 3 =×=×=  

 
3.  From the table,  1 ft = 12 in; 1 in = 2.54 cm.  Therefore, 
 

cm 4.152
in1

cm 54.2
ft1
in 12ft 5 ft  5 =××=  

 
4. From the table,  1000 m = 1 km; 1.609 km = 1 mi.  Therefore, 
 

mi 932.0
km1.609

mi 1km 1.5
km1.609

mi 1
m1000

km 1m 1500  m 1500 =×=××=  

 
 

 



Exercises: 
 
 


