NONLINEAR FUNCTIONS

A. Absolute Value

Exercises:

1. We need to scale the graph of $Q(x)=|x|$ by the factor of 3 to get the graph of $f(x)=3|x|$. The graph is given below.

2. We need to scale the graph of $Q(x)=|x|$ by the factor of -2 to get the graph of $f(x)=-2|x|$. The graph is given below.

3. To get the graph of $f(x)=2|x-1|$ by using $Q(x)=|x|$, firstly scale $Q(x)=|x|$ by a factor of 2 and then shift the graph 1 unit in the x direction.

4. To draw the graph of $G(x)=-|x+1|$ by using $Q(x)=|x|$, firstly reflect the graph of $Q(x)=|x|$ across the x axis and then shift the new graph -1 unit in the x direction.

5. The graph of $R(x)=\frac{1}{2}|x-1|+2$ can be obtained from $Q(x)=|x|$ by

- Scaling the graph of $Q(x)=|x|$ by a factor of $1 / 2$
- Shifting the new graph 1 unit in x direction and 2 units in y direction.

6. The graph of $T(x)=|x+1|-3$ can be obtained from $Q(x)=|x|$ by shifting the graph of $Q(x)=|x|$ first -1 unit in x direction and then -3 units in y direction.

7. The graph of $H(x)=|3 x-2|=\left|3\left(x-\frac{2}{3}\right)\right|=3\left|x-\frac{2}{3}\right|$ can be obtained from $Q(x)=|x|$ by

- Scaling the graph of $Q(x)=|x|$ by a factor of 3
- Shifting the new graph $2 / 3$ units in x direction.

8. The graph of $H(x)=|2 x+4|-1=|2(x+2)|-1=2|x+2|-1$ can be obtained from $Q(x)=|x|$ by

- Scaling the graph of $Q(x)=|x|$ by a factor of 2
- Shifting the new graph -2 units in x direction and -1 unit in y direction.

9. $G(x)=-|x+1|=\left\{\begin{array}{ll}-(x+1) & , \text { if } x+1 \geq 0 \\ -(-(x+1)) & , \text { if } x+1<0\end{array}=\left\{\begin{aligned}-x-1 & , \text { if } x+1 \geq 0 \\ x+1 & , \text { if } x+1<0\end{aligned}\right.\right.$ and $x+1 \geq 0 \Leftrightarrow x \geq-1$.
Hence, $G(x)$ can be written as:

$$
G(x)=\left\{\begin{array}{rl}
-x-1 & , \text { if } x \geq-1 \\
x+1 & , \text { if } x<-1
\end{array} .\right.
$$

10. $T(x)=|x+1|-3=\left\{\begin{array}{ll}(x+1)-3 & , \text { if } x+1 \geq 0 \\ -(x+1)-3 & , \text { if } x+1<0\end{array}=\left\{\begin{aligned} x-2 & , \text { if } x+1 \geq 0 \\ -x-4 & \text {, if } x+1<0\end{aligned}\right.\right.$ and $x+1 \geq 0 \Leftrightarrow x \geq-1$. Then,

$$
T(x)=\left\{\begin{array}{rl}
x-2 & , \text { if } x \geq-1 \\
-x-4 & \text {, if } x<-1
\end{array} .\right.
$$

11. $R(x)=\frac{1}{2}|x-1|+2=\left\{\begin{array}{ll}\frac{1}{2}(x-1)+2 & \text {, if } x-1 \geq 0 \\ -\frac{1}{2}(x-1)+2 & \text {, if } x-1<0\end{array}=\left\{\begin{aligned} \frac{1}{2} x+\frac{3}{2} & \text {, if } x-1 \geq 0 \\ -\frac{1}{2} x+\frac{5}{2} & \text {, if } x-1<0\end{aligned}\right.\right.$ and $x-1 \geq 0 \Leftrightarrow x \geq 1$. So,

$$
R(x)=\left\{\begin{array}{rl}
\frac{1}{2} x+\frac{3}{2} & , \text { if } x \geq 1 \\
-\frac{1}{2} x+\frac{5}{2} & \text {, if } x<1
\end{array} .\right.
$$

12. $H(x)=|3 x-2|=\left\{\begin{array}{cl}3 x-2 & , \text { if } 3 x-2 \geq 0 \\ -(3 x-2) & \text {, if } 3 x-2<0\end{array}=\left\{\begin{aligned} 3 x-2 & , \text { if } 3 x-2 \geq 0 \\ -3 x+2 & \text {, if } 3 x-2<0\end{aligned}\right.\right.$ and $3 x-2 \geq 0 \Leftrightarrow 3 x \geq 2 \Leftrightarrow x \geq \frac{2}{3}$. Thus,

$$
H(x)=\left\{\begin{array}{rl}
3 x-2 & , \text { if } x \geq 2 / 3 \\
-3 x+2 & \text {, if } x<2 / 3
\end{array} .\right.
$$

13. $M(x)=|2 x+4|-1=\left\{\begin{array}{ll}(2 x+4)-1 & \text {, if } 2 x+4 \geq 0 \\ -(2 x+4)-1 & \text {, if } 2 x+4<0\end{array}=\left\{\begin{aligned} 2 x+3 & \text {, if } 2 x+4 \geq 0 \\ -2 x-5 & \text {, if } 2 x+4<0\end{aligned}\right.\right.$ and $2 x+4 \geq 0 \Leftrightarrow 2 x \geq-4 \Leftrightarrow x \geq-2$. Hence,

$$
M(x)=\left\{\begin{array}{rl}
2 x+3 & , \text { if } x \geq-2 \\
-2 x-5 & \text {, if } x<-2
\end{array} .\right.
$$

B. Polynomial Functions

Exercises:

1. $P(x)=-x^{4}+8=-x^{4}+0 x^{3}+0 x^{2}+0 x+8$ is a polynomial of degree 4 .
2. $F(x)=-3 x^{3}+2 x^{2}+12=-3 x^{3}+2 x^{2}+0 x+12$ is a polynomial of degree 3 .
3. $f(x)=3 x^{2}-2 x+1=a x^{2}+b x+c$ is a second degree polynomial
4. $h(x)=-7 x^{5}+3 x^{3}-2 x+1=-7 x^{5}+0 x^{4}+3 x^{3}+0 x^{2}-2 x+1$ is a polynomial of degree 5 .
5. To graph the polynomial function $f(x)=-x^{4}+1$, we need to reflect the graph of $f(x)=x^{4}$ across the x axis and then shift the new graph 1 unit in y direction.

6. To graph $g(x)=-2 x^{3}+3$, we need to

- Reflect the graph of $f(x)=x^{3}$ across the x axis
- Scale the new graph by a factor of 2
- Shift the graph 3 units in y direction.

7. To draw the graph of $h(x)=-2(x-1)^{3}+1$, we need to:

- Reflect the graph of $f(x)=x^{3}$ across the x axis
- Scale the new graph by a factor of 2
- Shift the graph 1 unit in x direction and 1 unit in y direction.

8. To draw the graph of $F(x)=2(x-2)^{3}-3$, we need to:

- Scale the graph of $f(x)=x^{3}$ by a factor of 2
- Shift the graph 2 units in x direction and -3 units in y direction.

9. To obtain the graph of $F(x)=-2(x+3)^{7}-11$ from the graph of $g(x)=x^{7}$;

- Reflect the graph of $g(x)=x^{7}$ across the x axis
- Scale the graph by a factor of 2
- Shift the new graph -3 units in x direction and -11 units in y direction.

10. To obtain the graph of $F(x)=3(x-2)^{12}+5$ from the graph of $g(x)=x^{12}$;

- Scale the graph of $g(x)=x^{12}$ by a factor of 3
- Shift the new graph 2 units in x direction and -5 units in y direction.

11. To obtain the graph of $F(x)=(4 x+1)^{7}+2=\left(4\left(x+\frac{1}{4}\right)\right)^{7}+2=4^{7}\left(x+\frac{1}{4}\right)^{7}+2$ from the graph of $g(x)=x^{7}$;

- Scale the graph of $g(x)=x^{7}$ by a factor of 4^{7}
- Shift the new graph $-1 / 4$ units in x direction and -2 units in y direction.

C. Rational Functions

Exercises:

1. $f(x)=\frac{x}{x^{2}-4}$ has vertical asymptotes when $x^{2}-4=0 \Leftrightarrow x^{2}=4 \Leftrightarrow x= \pm 2$ (Notice that the numerator is not 0 when $x= \pm 2$).
Since the degree of the numerator is smaller than the degree of the denominator, the horizontal asymptote is $y=0$.
2. The vertical asymptote of $g(x)=\frac{2 x+1}{x-6}$ is $x=6$ since $x-6=0 \Leftrightarrow x=6$ (the numerator is not zero at this value).
The degrees of the numerator and the denominator are equal, so $y=\frac{2}{1}=2$ is the horizontal asymptote of $g(x)=\frac{2 x+1}{x-6}$.
3. To find the vertical asymptote(s) of $h(x)=\frac{3 x^{2}+1}{x^{2}-3 x+2}$ we need to solve the equation. $x^{2}-3 x+2=0$. We have:

$$
x^{2}-3 x+2=(x-1)(x-2)=0 \Leftrightarrow x=1 \text { or } x=2 \text {. }
$$

Since the numerator is not 0 at these values of x, the vertical asymptotes are $x=1$ and $x=2$.

The numerator and the denominator are same degree polynomials; $y=\frac{3}{1}=3$ is the horizontal asymptote.
4. $R(x)=\frac{2 x+1}{x^{2}+4 x-12}$ has vertical asymptotes if $x^{2}+4 x-12=0$ has solutions. Since

$$
x^{2}+4 x-12=(x+6)(x-2)=0 \Leftrightarrow x=-6 \text { or } x=2,
$$

the vertical asymptotes are $x=-6$ and $x=2$ (the numerator is not 0 for these values).
The horizontal asymptote is $y=0$ since the degree of the numerator is smaller than the degree of the denominator.
5. i) $f(x)=\frac{x}{x^{2}-4}$;

Domain: all values of x except $x= \pm 2$.
The x intercept is $x=0$ since $f(0)=0$.
The y intercept is $y=0$.
ii) $g(x)=\frac{2 x+1}{x-6}$;

Domain: all values of x except $x=6$.
The x intercept is $x=-1 / 2$ since $g(-1 / 2)=0$.
The y intercept is $y=-1 / 6$ since $g(0)=-1 / 6$.
iii) $h(x)=\frac{3 x^{2}+1}{x^{2}-3 x+2}$;

Domain: all values of x except $x=-6$ and $x=2$.
There is no x intercepts since $3 x^{2}+1=0$ has no solutions.
The y intercept is $y=1 / 2$ since $f(0)=1 / 2$.
iv) $R(x)=\frac{2 x+1}{x^{2}+4 x-12}$;

Domain: all values of x except $x=1$ and $x=2$.
The x intercept is $x=-1 / 2$ since $R(-1 / 2)=0$.
The y intercept is $y=-1 / 12$ since $f(0)=-1 / 12$.
6. The graph of $h(x)=\frac{-3}{x-2}$ is given below.

The vertical asymptote of $h(x)=\frac{-3}{x-2}$ is $x=2$ and the horizontal asymptote is $y=0$.
To get the graph of $h(x)=\frac{-3}{x-2}$ from $g(x)=\frac{1}{x}$, we need to:

- Reflect the graph of $g(x)=\frac{1}{x}$ across the x axis
- Scale the new graph by a factor of 3
- Shift the graph 2 units in x direction.

7. The graph of $g(x)=\frac{2 x+1}{x-6}$ is given below.

The vertical asymptote of $g(x)=\frac{2 x+1}{x-6}$ is $x=6$ and the horizontal asymptote is $y=2$.
To get the graph of $g(x)=\frac{2 x+1}{x-6}=2+\frac{13}{x-6}$ from $R(x)=\frac{1}{x}$, we need to:

- Scale the graph of $R(x)=\frac{1}{x}$ by a factor of 13
- Shift the graph 6 units in x direction and 2 units in y direction.

8. The graph of $f(x)=\frac{-3 x+6}{x-1}$ is given below.

The vertical asymptote of $f(x)=\frac{-3 x+6}{x-1}$ is $x=1$ and the horizontal asymptote is $y=-3$.
To get the graph of $f(x)=\frac{-3 x+6}{x-1}=-3+\frac{3}{x-1}$ from $g(x)=\frac{1}{x}$, we need to:

- Scale the graph of $g(x)=\frac{1}{x}$ by a factor of 3
- Shift the graph 1 unit in x direction and -3 units in y direction.

D. Exponential Functions

Exercises:

1. The horizontal asymptote for the graph of $g(x)=2^{x}-3$ is $y=-3$.

The y intercept is $y=-2$ since $g(0)=2^{0}-3=1-3=-2$.
2. We have $f(x)=\left(\frac{1}{3}\right)^{-x}=\left(3^{-1}\right)^{-x}=(3)^{(-1)(-x)}=3^{x}$, which means that $f(x)=\left(\frac{1}{3}\right)^{-x}$ and $f(x)=3^{x}$ have the same graph.
3. The horizontal asymptote for the graph of $f(x)=\left(\frac{1}{4}\right)^{-x}+5=\left(4^{-1}\right)^{-x}+5=4^{x}+5$ is $y=5$.
The y intercept is $y=6$ since $g(0)=4^{0}+5=6$.
4. To get the graph of $g(x)=2^{x}-3$ from $f(x)=2^{x}$, we need to shift the graph of $f(x)=2^{x}-3$ units in y direction.
5. To get the graph of $g(x)=\left(\frac{1}{3}\right)^{x+3}-7$ from $f(x)=\left(\frac{1}{3}\right)^{x}$, we need to shift the graph of $f(x)=\left(\frac{1}{3}\right)^{x}$

- -3 units in x direction
- 7 units in y direction.

6. To get the graph of $g(x)=5^{2 x}-1=\left(5^{2}\right)^{x}-1=25^{x}-1$ from $f(x)=25^{x}$, we need to shift the graph of $f(x)=25^{x}-1$ unit in y direction.
7. To graph $g(x)=2^{x}-3$, shift the graph of $f(x)=2^{x}-3$ units in y direction.

8. To get the graph of $g(x)=\left(\frac{1}{3}\right)^{x+3}-7$ we need to shift the graph of $f(x)=\left(\frac{1}{3}\right)^{x}-3$ units in x direction and -7 units in y direction.

9. The graph of $g(x)=\left(\frac{3}{2}\right)^{x}+2$ is obtained by shifting $f(x)=\left(\frac{3}{2}\right)^{x} 2$ units in y direction.

E. The number e, Radioactive Decay, and savings accounts

Exercises:

1. To draw the graph of $p(t)=e^{t}+1$ we need to shift the graph of $f(t)=e^{t} 1$ unit in y direction.

2. To draw the graph of $g(t)=e^{-t}+2$ we need to reflect the graph of $f(t)=e^{t}$ across the y axis and then shift it 2 units in y direction.

3. The graph of $f(t)=100 e^{0.21 t}$ is given below.

4.

\boldsymbol{t} (measured in years)	Percentage remaining $e^{-0.015 t}$
1	$0.98511194=98.51 \%$
10	$0.860707977=86.07 \%$
50	$0.472366554=47.23 \%$
100	$0.223130161=22.31 \%$
500	$0.000553084=0.05 \%$

5.

\boldsymbol{t} (measured in years)	Percentage remaining $e^{-0.0045 t}$
1	$0.99551011=99.55 \%$
10	$0.955997482=95.59 \%$
50	$0.798516219=79.85 \%$
100	$0.637628153=60.76 \%$
500	$0.105399225=10.53 \%$

6. We want to estimate the time when the percentage remaining is 50%. If you look at the table in Exercise-4, you'll see that after 50 years 47.23% of the substance is left. So, $1 / 2$ life of this substance must be smaller than 50 .

Percentage remaining is given by $e^{-0.015 t}$. Thus, we need to find t such that $e^{-0.015 t}=0.50$. If we take the natural logarithms of both sides, we get $-0.015 t=\ln (0.5)$. That is,

$$
t=\frac{\ln (0.5)}{-0.015}=46.2098
$$

Thus, the $1 / 2$ life of this substance is approximately 46.2 years.
7. We know that A_{0} dollars will be worth $A(t)=A_{0} e^{r t}$ dollars after t years. Here, $A_{0}=1000, r=0.08$ and $t=10$. Since

$$
A(10)=1000 e^{(0.08)(10)}=1000 e^{0.8}=2225.54
$$

there will be 2225.54 dollars in the account after 10 years.
8. In the formula $A(t)=A_{0} e^{r t}, A_{0}=100, r=0.07$ and $t=100$. We have $A(100)=100 e^{(0.07)(100)}=100 e^{7}=109663.32$.

Thus, there is approximately 109,663.32 dollars in the account.

