NONLINEAR FUNCTIONS

A. Absolute Value

Exercises:

1. We need to scale the graph of Q(x) = |x| by the factor of 3 to get the graph of f(x) = 3|x|. The graph is given below.

2. We need to scale the graph of Q(x) = |x| by the factor of -2 to get the graph of f(x) = -2|x|. The graph is given below.

3. To get the graph of f(x) = 2|x-1| by using Q(x) = |x|, firstly scale Q(x) = |x| by a factor of 2 and then shift the graph 1 unit in the x direction.

4. To draw the graph of G(x) = -|x+1| by using Q(x) = |x|, firstly reflect the graph of Q(x) = |x| across the *x* axis and then shift the new graph -1 unit in the *x* direction.

5. The graph of $R(x) = \frac{1}{2}|x-1|+2$ can be obtained from Q(x) = |x| by

- Scaling the graph of Q(x) = |x| by a factor of 1/2
- Shifting the new graph 1 unit in *x* direction and 2 units in *y* direction.

6. The graph of T(x) = |x+1| - 3 can be obtained from Q(x) = |x| by shifting the graph of Q(x) = |x| first -1 unit in x direction and then -3 units in y direction.

7. The graph of $H(x) = |3x-2| = \left|3\left(x-\frac{2}{3}\right)\right| = 3\left|x-\frac{2}{3}\right|$ can be obtained from Q(x) = |x| by

- Scaling the graph of Q(x) = |x| by a factor of 3
- Shifting the new graph 2/3 units in *x* direction.

8. The graph of H(x) = |2x+4| - 1 = |2(x+2)| - 1 = 2|x+2| - 1 can be obtained from Q(x) = |x| by

- Scaling the graph of Q(x) = |x| by a factor of 2
- Shifting the new graph -2 units in x direction and -1 unit in y direction.

9. $G(x) = -|x+1| = \begin{cases} -(x+1) & \text{, if } x+1 \ge 0 \\ -(-(x+1)) & \text{, if } x+1 < 0 \end{cases} = \begin{cases} -x-1 & \text{, if } x+1 \ge 0 \\ x+1 & \text{, if } x+1 < 0 \end{cases}$ and $x+1 \ge 0 \iff x \ge -1$. Hence, G(x) can be written as:

$$G(x) = \begin{cases} -x - 1 & \text{, if } x \ge -1 \\ x + 1 & \text{, if } x < -1 \end{cases}$$

$$10. \ T(x) = |x+1| - 3 = \begin{cases} (x+1) - 3 & \text{, if } x+1 \ge 0 \\ -(x+1) - 3 & \text{, if } x+1 < 0 \end{cases} = \begin{cases} x-2 & \text{, if } x+1 \ge 0 \\ -x-4 & \text{, if } x+1 < 0 \end{cases} \text{ and} \\ x+1 \ge 0 \iff x \ge -1. \text{ Then,} \\ T(x) = \begin{cases} x-2 & \text{, if } x\ge -1 \\ -x-4 & \text{, if } x< -1 \end{cases} \text{ and} \\ 11. \ R(x) = \frac{1}{2}|x-1| + 2 = \begin{cases} \frac{1}{2}(x-1) + 2 & \text{, if } x-1 \ge 0 \\ -\frac{1}{2}(x-1) + 2 & \text{, if } x-1 < 0 \end{cases} = \begin{cases} \frac{1}{2}x + \frac{3}{2} & \text{, if } x-1 \ge 0 \\ -\frac{1}{2}x + \frac{5}{2} & \text{, if } x-1 < 0 \end{cases} \text{ and} \\ x-1\ge 0 \iff x\ge 1. \text{ So,} \end{cases} \\ R(x) = \begin{cases} \frac{1}{2}x + \frac{3}{2} & \text{, if } x\ge 1 \\ -\frac{1}{2}x + \frac{5}{2} & \text{, if } x< 1 \end{cases} \\ 12. \ H(x) = |3x-2| = \begin{cases} 3x-2 & \text{, if } 3x-2\ge 0 \\ -(3x-2) & \text{, if } 3x-2 < 0 \end{cases} = \begin{cases} 3x-2 & \text{, if } 3x-2\ge 0 \\ -3x+2 & \text{, if } 3x-2 < 0 \end{cases} \text{ and} \\ 3x-2\ge 0 \iff 3x\ge 2 \iff x\ge \frac{2}{3}. \text{ Thus,} \\ H(x) = \begin{cases} 3x-2 & \text{, if } x\ge 2/3 \\ -3x+2 & \text{, if } x< 2/3 \end{cases}. \end{cases}$$

13.
$$M(x) = |2x+4| - 1 = \begin{cases} (2x+4) - 1 & \text{, if } 2x+4 \ge 0 \\ -(2x+4) - 1 & \text{, if } 2x+4 < 0 \end{cases} = \begin{cases} 2x+3 & \text{, if } 2x+4 \ge 0 \\ -2x-5 & \text{, if } 2x+4 < 0 \end{cases}$$
 and
 $2x+4 \ge 0 \iff 2x \ge -4 \iff x \ge -2$. Hence,
 $M(x) = \begin{cases} 2x+3 & \text{, if } x \ge -2 \\ -2x-5 & \text{, if } x < -2 \end{cases}$.

B. Polynomial Functions

Exercises: 1. $P(x) = -x^4 + 8 = -x^4 + 0x^3 + 0x^2 + 0x + 8$ is a polynomial of degree 4. 2. $F(x) = -3x^3 + 2x^2 + 12 = -3x^3 + 2x^2 + 0x + 12$ is a polynomial of degree 3. 3. $f(x) = 3x^2 - 2x + 1 = ax^2 + bx + c$ is a second degree polynomial 4. $h(x) = -7x^5 + 3x^3 - 2x + 1 = -7x^5 + 0x^4 + 3x^3 + 0x^2 - 2x + 1$ is a polynomial of degree 5. 5. To graph the polynomial function $f(x) = -x^4 + 1$, we need to reflect the graph of $f(x) = x^4$ across the *x* axis and then shift the new graph 1 unit in *y* direction.

- 6. To graph $g(x) = -2x^3 + 3$, we need to
 - Reflect the graph of $f(x) = x^3$ across the x axis
 - Scale the new graph by a factor of 2
 - Shift the graph 3 units in *y* direction.

- 7. To draw the graph of $h(x) = -2(x-1)^3 + 1$, we need to:
 - Reflect the graph of $f(x) = x^3$ across the x axis
 - Scale the new graph by a factor of 2
 - Shift the graph 1 unit in *x* direction and 1 unit in *y* direction.

- 8. To draw the graph of $F(x) = 2(x-2)^3 3$, we need to:
 - Scale the graph of $f(x) = x^3$ by a factor of 2
 - Shift the graph 2 units in x direction and -3 units in y direction.

9. To obtain the graph of $F(x) = -2(x+3)^7 - 11$ from the graph of $g(x) = x^7$;

- Reflect the graph of $g(x) = x^7$ across the *x* axis
- Scale the graph by a factor of 2
- Shift the new graph -3 units in x direction and -11 units in y direction.

10. To obtain the graph of $F(x) = 3(x-2)^{12} + 5$ from the graph of $g(x) = x^{12}$;

- Scale the graph of $g(x) = x^{12}$ by a factor of 3
- Shift the new graph 2 units in x direction and -5 units in y direction.

11. To obtain the graph of $F(x) = (4x+1)^7 + 2 = \left(4\left(x+\frac{1}{4}\right)\right)^7 + 2 = 4^7\left(x+\frac{1}{4}\right)^7 + 2$ from the

graph of $g(x) = x^7$;

- Scale the graph of $g(x) = x^7$ by a factor of 4^7
- Shift the new graph -1/4 units in *x* direction and -2 units in *y* direction.

C. Rational Functions

Exercises:

1. $f(x) = \frac{x}{x^2 - 4}$ has vertical asymptotes when $x^2 - 4 = 0 \iff x^2 = 4 \iff x = \pm 2$ (Notice that the numerator is not 0 when $x = \pm 2$).

Since the degree of the numerator is smaller than the degree of the denominator, the horizontal asymptote is y = 0.

2. The vertical asymptote of $g(x) = \frac{2x+1}{x-6}$ is x=6 since $x-6=0 \Leftrightarrow x=6$ (the numerator is not zero at this value).

The degrees of the numerator and the denominator are equal, so $y = \frac{2}{1} = 2$ is the

horizontal asymptote of $g(x) = \frac{2x+1}{x-6}$.

3. To find the vertical asymptote(s) of $h(x) = \frac{3x^2 + 1}{x^2 - 3x + 2}$ we need to solve the equation. $x^2 - 3x + 2 = 0$. We have:

$$x^{2} - 3x + 2 = (x - 1)(x - 2) = 0 \iff x = 1 \text{ or } x = 2$$

Since the numerator is not 0 at these values of *x*, the vertical asymptotes are x = 1 and x = 2.

The numerator and the denominator are same degree polynomials; $y = \frac{3}{1} = 3$ is the horizontal asymptote.

4.
$$R(x) = \frac{2x+1}{x^2+4x-12}$$
 has vertical asymptotes if $x^2 + 4x - 12 = 0$ has solutions. Since $x^2 + 4x - 12 = (x+6)(x-2) = 0 \iff x = -6$ or $x = 2$,

the vertical asymptotes are x = -6 and x = 2 (the numerator is not 0 for these values).

The horizontal asymptote is y = 0 since the degree of the numerator is smaller than the degree of the denominator.

5. i) $f(x) = \frac{x}{x^2 - 4}$; Domain: all values of x except $x = \pm 2$. The x intercept is x = 0 since f(0) = 0. The y intercept is y = 0.

ii) $g(x) = \frac{2x+1}{x-6}$; Domain: all values of x except x = 6.

The x intercept is x = -1/2 since g(-1/2) = 0. The y intercept is y = -1/6 since g(0) = -1/6. *iii*) $h(x) = \frac{3x^2 + 1}{x^2 - 3x + 2}$;

Domain: all values of x except x = -6 and x = 2. There is no x intercepts since $3x^2 + 1 = 0$ has no solutions. The y intercept is y = 1/2 since f(0) = 1/2.

iv)
$$R(x) = \frac{2x+1}{x^2+4x-12}$$
;

Domain: all values of x except x = 1 and x = 2. The x intercept is x = -1/2 since R(-1/2) = 0. The y intercept is y = -1/12 since f(0) = -1/12.

6. The graph of $h(x) = \frac{-3}{x-2}$ is given below.

The vertical asymptote of $h(x) = \frac{-3}{x-2}$ is x = 2 and the horizontal asymptote is y = 0. To get the graph of $h(x) = \frac{-3}{x-2}$ from $g(x) = \frac{1}{x}$, we need to:

- Reflect the graph of $g(x) = \frac{1}{x}$ across the x axis
- Scale the new graph by a factor of 3
- Shift the graph 2 units in *x* direction.

7. The graph of $g(x) = \frac{2x+1}{x-6}$ is given below.

The vertical asymptote of $g(x) = \frac{2x+1}{x-6}$ is x = 6 and the horizontal asymptote is y = 2. To get the graph of $g(x) = \frac{2x+1}{x-6} = 2 + \frac{13}{x-6}$ from $R(x) = \frac{1}{x}$, we need to:

- Scale the graph of $R(x) = \frac{1}{x}$ by a factor of 13
- Shift the graph 6 units in *x* direction and 2 units in *y* direction.

8. The graph of $f(x) = \frac{-3x+6}{x-1}$ is given below.

The vertical asymptote of $f(x) = \frac{-3x+6}{x-1}$ is x = 1 and the horizontal asymptote is y = -3. To get the graph of $f(x) = \frac{-3x+6}{x-1} = -3 + \frac{3}{x-1}$ from $g(x) = \frac{1}{x}$, we need to:

- Scale the graph of $g(x) = \frac{1}{x}$ by a factor of 3
- Shift the graph 1 unit in x direction and -3 units in y direction.

D. Exponential Functions

Exercises:

1. The horizontal asymptote for the graph of $g(x) = 2^x - 3$ is y = -3. The *y* intercept is y = -2 since $g(0) = 2^0 - 3 = 1 - 3 = -2$.

2. We have
$$f(x) = \left(\frac{1}{3}\right)^{-x} = \left(3^{-1}\right)^{-x} = \left(3^{(-1)(-x)} = 3^x\right)$$
, which means that $f(x) = \left(\frac{1}{3}\right)^{-x}$ and $f(x) = 3^x$ have the same graph.

3. The horizontal asymptote for the graph of $f(x) = \left(\frac{1}{4}\right)^{-x} + 5 = \left(4^{-1}\right)^{-x} + 5 = 4^x + 5$ is y = 5.

The y intercept is y = 6 since $g(0) = 4^0 + 5 = 6$.

4. To get the graph of $g(x) = 2^x - 3$ from $f(x) = 2^x$, we need to shift the graph of $f(x) = 2^x - 3$ units in y direction.

5. To get the graph of $g(x) = \left(\frac{1}{3}\right)^{x+3} - 7$ from $f(x) = \left(\frac{1}{3}\right)^x$, we need to shift the graph of $f(x) = \left(\frac{1}{3}\right)^x$

- -3 units in *x* direction
- 7 units in *y* direction.

6. To get the graph of $g(x) = 5^{2x} - 1 = (5^2)^x - 1 = 25^x - 1$ from $f(x) = 25^x$, we need to shift the graph of $f(x) = 25^x - 1$ unit in y direction.

7. To graph $g(x) = 2^x - 3$, shift the graph of $f(x) = 2^x - 3$ units in y direction.

8. To get the graph of $g(x) = \left(\frac{1}{3}\right)^{x+3} - 7$ we need to shift the graph of $f(x) = \left(\frac{1}{3}\right)^x - 3$ units in x direction and -7 units in y direction.

9. The graph of $g(x) = \left(\frac{3}{2}\right)^x + 2$ is obtained by shifting $f(x) = \left(\frac{3}{2}\right)^x 2$ units in y direction.

E. The number *e*, Radioactive Decay, and savings accounts

Exercises:

1. To draw the graph of $p(t) = e^{t} + 1$ we need to shift the graph of $f(t) = e^{t} + 1$ unit in y direction.

2. To draw the graph of $g(t) = e^{-t} + 2$ we need to reflect the graph of $f(t) = e^{t}$ across the y axis and then shift it 2 units in y direction.

3. The graph of $f(t) = 100e^{0.21t}$ is given below.

4.

t	Percentage remaining
(measured in years)	$e^{-0.015t}$
1	0.98511194 = 98.51%
10	0.860707977 = 86.07%
50	0.472366554 = 47.23%
100	0.223130161 = 22.31%
500	0.000553084 = 0.05%

5.

t	Percentage remaining
(measured in years)	$e^{-0.0045t}$
1	0.99551011 = 99.55%
10	0.955997482 = 95.59%
50	0.798516219 = 79.85%
100	0.637628153 = 60.76%
500	0.105399225 = 10.53%

6. We want to estimate the time when the percentage remaining is 50%. If you look at the table in Exercise-4, you'll see that after 50 years 47.23% of the substance is left. So, $\frac{1}{2}$ life of this substance must be smaller than 50.

Percentage remaining is given by $e^{-0.015t}$. Thus, we need to find *t* such that $e^{-0.015t} = 0.50$. If we take the natural logarithms of both sides, we get $-0.015t = \ln(0.5)$. That is,

$$t = \frac{\ln(0.5)}{-0.015} = 46.2098 \,.$$

Thus, the 1/2 life of this substance is approximately 46.2 years.

7. We know that A_0 dollars will be worth $A(t) = A_0 e^{rt}$ dollars after *t* years. Here, $A_0 = 1000$, r = 0.08 and t = 10. Since $A(10) = 1000e^{(0.08)(10)} = 1000e^{0.8} = 2225.54$,

there will be 2225.54 dollars in the account after 10 years.

8. In the formula $A(t) = A_0 e^{rt}$, $A_0 = 100$, r = 0.07 and t = 100. We have $A(100) = 100e^{(0.07)(100)} = 100e^7 = 109663.32$.

Thus, there is approximately 109,663.32 dollars in the account.