SEQUENCES

Exercises:

1. $a_{n}=10-2 n$;
$a_{1}=10-2(1)=8$,
$a_{2}=10-2(2)=6$,
$a_{3}=10-2(3)=4$,
$a_{4}=10-2(4)=2$,
$a_{5}=10-2(5)=0$, and
$a_{8}=10-2(8)=-6$.
2. $a_{n}=\frac{3}{1-2 n}$;
$a_{1}=\frac{3}{1-2(1)}=\frac{3}{-1}=-3$,
$a_{2}=\frac{3}{1-2(2)}=\frac{3}{-3}=-1$,
$a_{3}=\frac{3}{1-2(3)}=\frac{3}{-5}=-\frac{3}{5}$,
$a_{4}=\frac{3}{1-2(4)}=\frac{3}{-7}=-\frac{3}{7}$,
$a_{5}=\frac{3}{1-2(5)}=\frac{3}{-9}=-\frac{1}{3}$, and
$a_{8}=\frac{3}{1-2(8)}=\frac{3}{-15}=-\frac{1}{5}$.
3. $a_{n}=\frac{2 n-4}{n^{2}+1}$;
$a_{1}=\frac{2(1)-4}{(1)^{2}+1}=\frac{-2}{2}=-1$,
$a_{2}=\frac{2(2)-4}{(2)^{2}+1}=\frac{0}{5}=0$,
$a_{3}=\frac{2(3)-4}{(3)^{2}+1}=\frac{2}{10}=\frac{1}{5}$,
$a_{4}=\frac{2(4)-4}{(4)^{2}+1}=\frac{4}{17}$,
$a_{5}=\frac{2(5)-4}{(5)^{2}+1}=\frac{6}{26}=\frac{3}{13}$, and
$a_{8}=\frac{2(8)-4}{(8)^{2}+1}=\frac{12}{65}$.
4. $a_{n}=8+\frac{1}{n}$;
$a_{1}=8+\frac{1}{1}=9$,
$a_{2}=8+\frac{1}{2}=\frac{17}{2}$,
$a_{3}=8+\frac{1}{3}=\frac{25}{3}$,
$a_{4}=8+\frac{1}{4}=\frac{33}{4}$,
$a_{5}=8+\frac{1}{5}=\frac{41}{5}$, and
$a_{8}=8+\frac{1}{8}=\frac{65}{8}$.
5. $a_{n}=6$;
$a_{1}=a_{2}=a_{3}=a_{4}=a_{5}=a_{8}=6$.
6. $a_{n}=2+(-1)^{n}$;
$a_{1}=2+(-1)^{1}=2-1=1$,
$a_{2}=2+(-1)^{2}=2+1=3$,
$a_{3}=2+(-1)^{3}=2-1=1$,
$a_{4}=2+(-1)^{4}=2+1=3$,
$a_{5}=1$ and $a_{8}=3$.
7. $a_{n}=2+(0.1)^{n}$;
$a_{1}=2+(0.1)^{1}=2.1$,
$a_{2}=2+(0.1)^{2}=2+0.01=2.01$,
$a_{3}=2+(0.1)^{3}=2+0.001=2.001$,
$a_{4}=2+(0.1)^{4}=2+0.0001=2.0001$,
$a_{5}=2+(0.1)^{5}=2+0.00001=2.00001$, and
$a_{8}=2+(0.1)^{8}=2+0.00000001=2.00000001$.
8. $a_{n}=(-1)^{n-1} \frac{n+1}{2 n}$;
$a_{1}=(-1)^{1-1} \frac{1+1}{2(1)}=\frac{2}{2}=1$,
$a_{2}=(-1)^{2-1} \frac{2+1}{2(2)}=-\frac{3}{4}$,
$a_{3}=(-1)^{3-1} \frac{3+1}{2(3)}=\frac{4}{6}=\frac{2}{3}$,
$a_{4}=(-1)^{4-1} \frac{4+1}{2(4)}=-\frac{5}{8}$,
$a_{5}=(-1)^{5-1} \frac{5+1}{2(5)}=\frac{6}{10}=\frac{3}{5}$, and
$a_{8}=(-1)^{8-1} \frac{8+1}{2(8)}=-\frac{9}{16}$.
9. $a_{n}=\frac{1+(-1)^{n+1}}{2}$;
$a_{1}=\frac{1+(-1)^{1+1}}{2}=\frac{2}{2}=1$,
$a_{2}=\frac{1+(-1)^{2+1}}{2}=\frac{1-1}{2}=0$,
$a_{3}=a_{5}=1$ and $a_{4}=a_{8}=0$.
10. $a_{n}=\frac{2^{n}}{n^{2}+2}$;
$a_{1}=\frac{2^{1}}{(1)^{2}+2}=\frac{2}{3}$,
$a_{2}=\frac{2^{2}}{(2)^{2}+2}=\frac{4}{6}=\frac{2}{3}$,
$a_{3}=\frac{2^{3}}{(3)^{2}+2}=\frac{8}{11}$,
$a_{4}=\frac{2^{4}}{(4)^{2}+2}=\frac{16}{18}=\frac{8}{9}$,
$a_{5}=\frac{2^{5}}{(5)^{2}+2}=\frac{32}{27}$, and
$a_{8}=\frac{2^{8}}{(8)^{2}+2}=\frac{256}{66}=\frac{128}{33}$.
11. $a_{1}=1, \quad a_{n+1}=\frac{a_{n}+1}{2}$;
$a_{2}=\frac{a_{1}+1}{2}=\frac{1+1}{2}=1$,
$a_{3}=\frac{a_{2}+1}{2}=\frac{1+1}{2}=1$,
$a_{4}=a_{5}=1$.
Since all the terms are same, the general formula is $a_{n}=1$.
12. $a_{1}=1, a_{n+1}=\frac{1}{n+1} a_{n}$;
$a_{2}=\frac{1}{1+1} a_{1}=\frac{1}{2}(1)=\frac{1}{2}$,
$a_{3}=\frac{1}{2+1} a_{2}=\frac{1}{3}\left(\frac{1}{2}\right)=\frac{1}{6}$,
$a_{4}=\frac{1}{3+1} a_{3}=\frac{1}{4}\left(\frac{1}{6}\right)=\frac{1}{24}$,
$a_{5}=\frac{1}{4+1} a_{4}=\frac{1}{5}\left(\frac{1}{24}\right)=\frac{1}{120}$
The general rule is $a_{n}=\frac{1}{n!}$.
13. $a_{1}=2, a_{n+1}=2 a_{n}+2$;
$a_{2}=2 a_{1}+2=2(2)+2=6$,
$a_{3}=2 a_{2}+2=2(6)+2=14$,
$a_{4}=2 a_{3}+2=2(14)+2=30$,
$a_{5}=2 a_{4}+2=2(30)+2=62$.
14. $a_{1}=1, a_{n+1}=a_{n}+2 n+1$,
$a_{2}=a_{1}+2(1)+1=1+2+1=4$,
$a_{3}=a_{2}+2(2)+1=4+4+1=9$,
$a_{4}=a_{3}+2(3)+1=9+6+1=16$,
$a_{5}=a_{4}+2(4)+1=16+8+1=25$.
The general rule is $a_{n}=n^{2}$.
15. $a_{1}=1, a_{n+1}=a_{n}+a_{n-1}+\ldots+a_{1}$;
$a_{2}=a_{1}=1$;
$a_{3}=a_{2}+a_{1}=1+1=2$,
$a_{4}=a_{3}+a_{2}+a_{1}=2+1+1=4$,
$a_{5}=a_{4}+a_{3}+a_{2}+a_{1}=4+2+1+1=8$.
16. $a_{1}=1, a_{n+1}=2 a_{n}+1$;
$a_{2}=2 a_{1}+1=2(1)+1=3$,
$a_{3}=2 a_{2}+1=2(3)+1=7$,
$a_{4}=2 a_{3}+1=2(7)+1=15$,

$$
a_{5}=2 a_{4}+1=2(15)+1=31 .
$$

17. Since $a_{n}=\frac{n-1}{n}=1-\frac{1}{n}$ and $\lim _{n \rightarrow \infty} \frac{1}{n}=0$, we can conclude that $\lim _{n \rightarrow \infty} a_{n}=1-0=1$.
18. In the expression $a_{n}=\frac{n^{2}}{n+1}$, the numerator increases much faster than the denominator. Look at some of the terms;

$$
a_{1}=\frac{1}{2}, a_{2}=\frac{4}{3}, a_{3}=\frac{9}{4}, a_{4}=\frac{16}{5}, a_{5}=\frac{25}{6}, a_{10}=\frac{100}{11} .
$$

So, the terms of this sequence increase a lot as $n \rightarrow \infty$ and there is no one number that they get closer. Hence, the sequence $a_{n}=\frac{n^{2}}{n+1}$ does not have a limit.
19. We know that $a_{n}=\frac{n-1}{n^{2}}=\frac{1}{n}-\frac{1}{n^{2}}$. Moreover, $\frac{1}{n} \rightarrow 0$ and $\frac{1}{n^{2}} \rightarrow 0$ as $n \rightarrow \infty$. Hence, $a_{n} \rightarrow 0$ as $n \rightarrow \infty$.
20. We have; $a_{n}=\frac{n+(-1)^{n}}{n}=1+\frac{(-1)^{n}}{n}$. So, we need to know whether $\frac{(-1)^{n}}{n}$ has a limit or not. Let's look at some of its terms;

$$
\frac{-1}{1}, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4}, \frac{-1}{5}, \frac{1}{6}, \ldots, \frac{-1}{999}, \frac{1}{1000}, \text { etc . }
$$

Although the terms are oscillating between positive and negative numbers, they are getting closer and closer to zero from right and left. Hence, we can conclude that $\frac{(-1)^{n}}{n} \rightarrow 0$ as $n \rightarrow \infty$.
That is, $a_{n}=\frac{n+(-1)^{n}}{n}=1+\frac{(-1)^{n}}{n} \rightarrow 1$ as $n \rightarrow \infty$.
21. For $a_{n}=\frac{2^{n}}{4^{n}+1}$, the denominator increases much faster than the numerator. Look at the first few terms to see the behavior;

$$
a_{1}=\frac{2}{5}, a_{2}=\frac{4}{17}, a_{3}=\frac{8}{65} \approx 0,123, a_{4}=\frac{16}{256} \approx 0,063 .
$$

So, not only the terms are decreasing they are also getting closer to 0 .
Hence, $\lim _{n \rightarrow \infty}\left(\frac{2^{n}}{4^{n}+1}\right)=0$.
22. Let's write down some of the terms of $a_{n}=\frac{4 n}{\sqrt{n^{2}+1}}$;
$a_{1}=\frac{4}{\sqrt{2}} \approx 2.83, a_{2}=\frac{8}{\sqrt{5}} \approx 3.58, a_{3}=\frac{12}{\sqrt{10}} \approx 3.79, a_{4}=\frac{16}{\sqrt{17}} \approx 3.88, a_{5}=\frac{20}{\sqrt{26}} \approx 3.92, a_{100}=\frac{400}{\sqrt{10001}} \approx 3.9998$
Hence, the terms are increasing and getting closer to 4 . But, are we sure that the terms do not pass 4 ? We can not be sure just by checking some of the terms; checking even the $100^{\text {th }}$ term is not enough.
Notice that since $\sqrt{n^{2}}=n, \sqrt{n^{2}+1}>n$. Hence, $\frac{n}{\sqrt{n^{2}+1}}<1$; that is, $a_{n}=\frac{4 n}{\sqrt{n^{2}+1}}<4$.
Now we can conclude that $\lim _{n \rightarrow \infty}\left(\frac{4 n}{\sqrt{n^{2}+1}}\right)=4$.
23. $-11,-16,-21, \ldots$ can be the first three terms of an arithmetic sequence since there is a constant difference between the terms; the terms are decreasing by 5 . Therefore, $d=-5$ $\left(a_{2}-a_{1}=-16-(-11)=-5\right)$.

We know the first term; $a=-11$. Then,

$$
a_{n}=a+(n-1) d=-11+(n-1)(-5)=-11-5 n+5=-6-5 n .
$$

24. Let's check the difference and the ratio between the terms of $1,4,9, \ldots$.
$a_{2}-a_{1}=4-1=3$ but $a_{3}-a_{2}=9-4=5$; the difference is not constant.
$\frac{a_{2}}{a_{1}}=\frac{4}{1}=4$ but $\frac{a_{3}}{a_{2}}=\frac{9}{4}$; the ratio is not constant.
Hence, these three terms can not be the terms of an arithmetic or a geometric sequence.
25. The sequence $2,-4,8, \ldots$ is a geometric sequence since there is a constant ratio;

$$
\frac{a_{2}}{a_{1}}=\frac{-4}{2}=-2 \text { and } \frac{a_{3}}{a_{2}}=\frac{8}{-4}=-2 .
$$

Hence, $r=-2$ and $a=2$.
The general term is $a_{n}=a \cdot r^{n-1}=2(-2)^{n-1}$.
26. $7,6.5,6, \ldots$. can be an arithmetic sequence since $6.5-7=6-6.5=-0.5$. The common difference is $d=-0.5$.
The general term is;

$$
a_{n}=a+(n-1) d=7+(n-1)(-0.5)=7-0.5 n+0.5=-0.5 n+7.5
$$

27. For the sequence $\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \ldots$, it is obvious that the difference between the consecutive terms is not constant. Let's check the ratio;

$$
\frac{a_{2}}{a_{1}}=\frac{1 / 6}{1 / 2}=\frac{1}{3} \text { and } \frac{a_{3}}{a_{2}}=\frac{1 / 18}{1 / 6}=\frac{1}{3} .
$$

Then, the sequence can be a geometric sequence with the common ratio $r=\frac{1}{3}$ and $a=\frac{1}{2}$.
Hence, the general term is:

$$
a_{n}=a \cdot r^{n-1}=\frac{1}{2}\left(\frac{1}{3}\right)^{n-1} .
$$

28. $3,3,3, \ldots$ is both an arithmetic and a geometric sequence since there is a constant difference and a constant ratio between the consecutive terms;

$$
3-3=3-3=0 \text { and } \frac{3}{3}=\frac{3}{3}=1 .
$$

The general rule is $a_{n}=3(1)^{n-1}=3+(n-1) 0=3$.
29. It is clear that the difference is not constant between the consecutive terms of $\frac{1}{2}, \frac{1}{4}, \frac{1}{9}, \ldots$. Let's check the ratio between them.

$$
\frac{a_{2}}{a_{1}}=\frac{1 / 4}{1 / 2}=\frac{1}{2} \text { and } \frac{a_{3}}{a_{2}}=\frac{1 / 9}{1 / 4}=\frac{4}{9} .
$$

So, there is no constant ratio. This sequence is neither arithmetic nor geometric.
30. The sequence $7,14,28, \ldots$ is a geometric sequence since $\frac{a_{2}}{a_{1}}=\frac{14}{7}=2$ and $\frac{a_{3}}{a_{2}}=\frac{28}{14}=2$.

Then, the common ratio is $r=2$ and $a=7$. The general term is:

$$
a_{n}=a \cdot r^{n-1}=7(2)^{n-1} .
$$

31. For the arithmetic sequence $2,6,10,14, \ldots$, the common difference is
$d=6-2=10-6=4$ and $a=2$.
The $10^{\text {th }}$ term is: $a_{10}=2+(10-1) 4=2+36=38$
The $n^{\text {th }}$ term is: $a_{n}=a+(n-1) d=2+(n-1)(4)=2+4 n-4=4 n-2$.
Finding the $10^{\text {th }}$ term is easier after finding the $n^{\text {th }}$ term; $a_{10}=4(10)-2=38$.
32. The common difference for the arithmetic sequence $11,9,7, \ldots$ is $-2 ; d=9-11=-2$. Since the first term is 11 , the $n^{\text {th }}$ term is;

$$
a_{n}=a+(n-1) d=11+(n-1)(-2)=11-2 n+2=-2 n+13 .
$$

And the $10^{\text {th }}$ term is: $a_{10}=-2(10)+13=-20+13=-7$.
33. For the arithmetic sequence $3,2.7,2.4,2.1, \ldots, d=-0.3$ and $a=3$. Hence, the $n^{\text {th }}$ term is:

$$
a_{n}=a+(n-1) d=3+(n-1)(-0.3)=3-0.3 n+0.3=-0.3 n+3.3 .
$$

And the $10^{\text {th }}$ term is: $a_{10}=3+(10-1)(-0.3)=3-2.7=0.3$.
34. The $10^{\text {th }}$ term is $a_{10}=2.5$ and $a_{n}=7.5-\frac{n}{2}$.
35. Since $a=7$ and $d=2, a_{5}=a+4 d=7+4(2)=15$ and $S_{10}=\frac{10}{2}[2(7)+9(2)]=5(32)=160$.
36. $a=2$ and $d=-3 ; a_{10}=a+9 d=2+9(-3)=-25$ and $S_{20}=\frac{20}{2}[2(2)+19(-3)]=10(-53)=-530$.
37. $a=5$ and $d=0.1 ; a_{10}=a+9 d=5+9(0.1)=5.9$ and
$S_{20}=\frac{20}{2}[2(5)+19(0.1)]=10(11.9)=119$.
38. $a=\frac{7}{3}$ and $d=-\frac{2}{3} ; a_{16}=a+15 d=\frac{7}{3}+15\left(-\frac{2}{3}\right)=-\frac{23}{3}$ and $S_{16}=\frac{16}{2}\left[2\left(\frac{7}{3}\right)+15\left(-\frac{2}{3}\right)\right]=8\left(-\frac{16}{3}\right)=-\frac{128}{3}$.
39. For the geometric sequence $8,4,2,1, \ldots$, the common ratio is: $r=\frac{4}{8}=\frac{1}{2}$ and $a=8$ (Notice that we can use $r=\frac{a_{2}}{a_{1}}$ since we already know that the sequence is a geometric sequence.).
The $n^{\text {th }}$ term is: $a_{n}=a \cdot r^{n-1}=8\left(\frac{1}{2}\right)^{n-1}$.
The $10^{\text {th }}$ term is: $a_{10}=a \cdot r^{10-1}=8\left(\frac{1}{2}\right)^{9}=\left(\frac{1}{2}\right)^{6}$.
40. 2, 6,18, \ldots. is a geometric sequence with $r=\frac{6}{2}=3$ and $a=2$.

The $n^{\text {th }}$ term is: $a_{n}=a \cdot r^{n-1}=2(3)^{n-1}$.
The $10^{\text {th }}$ term is: $a_{10}=a \cdot r^{10-1}=2(3)^{9}$.
41. The common ratio of $4,1.2,0.36, \ldots$ is $r=\frac{1.2}{4}=0.3$ and $a=4$.

The $n^{\text {th }}$ term is: $a_{n}=a \cdot r^{n-1}=4(0.3)^{n-1}$.
The $10^{\text {th }}$ term is: $a_{10}=a \cdot r^{10-1}=4(0.3)^{9}$.
42. For the geometric sequence $4,-6,9,-13.5, \ldots, r=\frac{-6}{4}=-\frac{3}{2}$ and $a=4$.

The $n^{\text {th }}$ term is: $a_{n}=a \cdot r^{n-1}=4\left(-\frac{3}{2}\right)^{n-1}$.
The $10^{\text {th }}$ term is: $a_{10}=a \cdot r^{10-1}=4\left(-\frac{3}{2}\right)^{9}=-\frac{3^{9}}{2^{7}}$.
43. $a=3, r=-2 ; a_{6}=a \cdot r^{6-1}=3(-2)^{5}=3(-32)=-96$ and $S_{6}=\frac{a-a r^{6}}{1-r}=\frac{3-3(-2)^{6}}{1-(-2)}=\frac{3-3(64)}{3}=-63$.
44. $a=2, r=\frac{1}{3} ; a_{4}=a \cdot r^{4-1}=2\left(\frac{1}{3}\right)^{3}=\frac{2}{27}$ and $S_{4}=\frac{2-2(1 / 3)^{6}}{1-(1 / 3)}=3-\frac{1}{3^{5}}=\frac{3^{6}-1}{3^{5}}$.
45. $a=1, r=\frac{3}{2} ; a_{4}=a \cdot r^{4-1}=1\left(\frac{3}{2}\right)^{3}=\frac{27}{8}$ and $S_{4}=\frac{1-(3 / 2)^{6}}{1-(3 / 2)}=-2\left[1-(3 / 2)^{6}\right]=-2+\frac{3^{6}}{2^{5}}=$.
46. $a=50, r=\frac{1}{2} ; a_{10}=a \cdot r^{10-1}=50\left(\frac{1}{2}\right)^{9}$ and
$S_{10}=\frac{50-50(1 / 2)^{10}}{1-(1 / 2)}=2\left[50-50(1 / 2)^{10}\right]=100-100\left(\frac{1}{2}\right)^{10}=100-\frac{25}{2^{8}}$.
47. The series $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\ldots$ is a geometric series where $a=1$ and $r=\frac{-1 / 2}{1}=\frac{1 / 4}{-1 / 2}=-\frac{1}{2}$. Since $|r|=\frac{1}{2}<1$, this series has a finite sum and the sum is $S=\frac{a}{1-r}=\frac{1}{1-(-1 / 2)}=\frac{2}{3}$.
48. $50+25+12.5+\ldots$. is also a geometric series with $a=50$ and $r=\frac{25}{50}=\frac{12.5}{25}=\frac{1}{2}$.

Moreover, $|r|=\frac{1}{2}<1$. Thus, the series has a finite sum which is $S=\frac{a}{1-r}=\frac{50}{1-1 / 2}=100$.
49. $2+\frac{2}{3}+\frac{2}{9}+\frac{2}{27}+\ldots$ is a geometric series with $a=2$ and $r=\frac{2 / 3}{2}=\frac{2 / 9}{2 / 3}=\frac{1}{3}$. Since $|r|=\frac{1}{3}<1$. The series has a finite sum and the sum is $S=\frac{a}{1-r}=\frac{2}{1-1 / 3}=3$.
50. The series $1+\frac{3}{2}+\frac{9}{4}+\frac{27}{8}+\ldots$ is a geometric series where $a=1$ and $r=\frac{3 / 2}{1}=\frac{9 / 4}{3 / 2}=\frac{27 / 8}{9 / 4}=\frac{3}{2}$. However, $|r|=\frac{3}{2}>1$. This means that this series does not have a finite sum.

