QUADRATIC FUNCTIONS

A.

Exercises:

1. $(-2 x+1)(3 x-5)=-2 x(3 x-5)+1(3 x-5)=-6 x^{2}+10 x+3 x-5=-6 x^{2}+13 x-5$.
2. $(x-7)(5 x-6)=x(5 x-6)-7(5 x-6)=5 x^{2}-6 x-35 x+42=5 x^{2}-41 x+42$.
3.

\times	$3 x$	
$-2 x$	$-6 x^{2}$	-5
1	$3 x$	-5
Sum:	$-6 x^{2}+10 x+3 x-5$	
$(-2 x+1)(3 x-5)=$	$-6 x^{2}+13 x-5$	

4.

\times	$5 x$	-6
x		
x		

5. $(-2 x+1)(3 x-5)=-6 x^{2}+10 x+3 x-5=-6 x^{2}+13 x-5$.
6. $(x-7)(5 x-6)=5 x^{2}-6 x-35 x+42=5 x^{2}-41 x+42$.
7. $\left(-2 x+\frac{1}{2}\right)(5 x-2)=-2 x(5 x-2)+\frac{1}{2}(5 x-2)=-10 x^{2}+4 x+\frac{5}{2} x-1=-10 x^{2}+\frac{13}{2} x-1$.
8. We'll expand it by using the distributive property;

$$
(10 x+1)(10 x-1)=10 x(10 x-1)+1(10 x-1)=100 x^{2}-10 x+10 x-1=100 x^{2}-1 .
$$

9. Let's use the FOIL method;

$$
(a x+b)(a x-b)=a^{2} x^{2}-a x b+b a x-b^{2}=a^{2} x^{2}-b^{2} .
$$

10. To factor $x^{2}+3 x-4$, we need to find p and q so that $p q=-4$ and $p+q=3$. If you try some possibilities for $p q=-4$, you'll see that when $p=4$ and $q=-1$ both conditions are satisfied.
Hence, $x^{2}+3 x-4=(x+4)(x-1)$.
11. To factor the expression $3 x^{2}+4 x+1$, we need to find r, p, s and q so that $3 x^{2}+4 x+1=(r x+p)(s x+q)$. That is, $r s=3, p s+r q=4$ and $p q=1$.

Let's try the easiest case; $p=q=1$ and $r=3, s=1$. Two of the conditions are satisfied ($r s=3$ and $p q=1$), but we need to check the third:
$p s+r q=(1)(1)+(3)(1)=4$.
So, these are the numbers we're looking for.
Hence, $3 x^{2}+4 x+1=(3 x+1)(x+1)$.
12. $x^{2}-16$ is an expression which is suitable to use the difference of two squares. Notice that $4^{2}=16$. Hence, $x^{2}-16=(x-4)(x+4)$.
13. $x^{2}-100$ is also suitable for the difference of two squares. Since $10^{2}=100$, we get:

$$
x^{2}-100=(x-10)(x+10) .
$$

14. Firstly, notice that we can not use the difference of two squares here (basically since there is no "difference" here, this is a sum).
To factor $x^{2}+100$, we need p and q so that $p q=100$ and $p+q=0$. There are lots of couples of numbers satisfying the first condition, but it is important to remember that to have $p+q=0, p$ and q must be of opposite sign (we know that they are not 0 since their product is not). However, if p and q have opposite signs then their product should be negative. For example, $p=10, q=-10 \Rightarrow p q=-100$. Hence, it is impossible to find such two numbers. The expression $x^{2}+100$ is not a product of linear factors with integer coefficients.
15. To factor $x^{2}+x+6$, we need p and q so that $p q=6$ and $p+q=1$.

p and q so that $p q=6$	$p+q$
1 and 6	7
2 and 3	5

Hence, as you can observe from the table, $x^{2}+x+6$ does not have linear factors with integer coefficients.
16. In Exercise-9, we expanded the expression $(a x+b)(a x-b)$ and we got $(a x+b)(a x-b)=a^{2} x^{2}-b^{2}$. So, the factors of $a^{2} x^{2}-b^{2}$ are $(a x+b)$ and $(a x-b)$;

$$
a^{2} x^{2}-b^{2}=(a x+b)(a x-b) .
$$

17. We know from Exercise-10 that $x^{2}+3 x-4=(x+4)(x-1)$. So, $x^{2}+3 x-4=0$ if and only if $x+4=0$ or $x-1=0$.
Hence, the solutions of the equation $x^{2}+3 x-4=0$ are $x=-4$ and $x=1$.
18. We know that $3 x^{2}+4 x+1=(3 x+1)(x+1)$ (See Exercise-11). Hence, $3 x^{2}+4 x+1=0$ if and only if $3 x+1=0$ or $x+1=0$.
That is, the solutions to $3 x^{2}+4 x+1=0$ are $x=-\frac{1}{3}$ and $x=-1$.
19.We have $x^{2}-16=(x-4)(x+4)$, so $x^{2}-16=0$ if and only if $x-4=0$ or $x+4=0$.

Thus, the solutions of the expression $x^{2}-16=0$ are $x=4$ and $x=-4$.
20. Since $x^{2}-100=(x-10)(x+10), x^{2}-100=0$ if and only if $x-10=0$ or $x+10=0$.

Hence, the solutions to $x^{2}-100=0$ are $x=10$ and $x=-10$.
21. As we saw before, $a^{2} x^{2}-b^{2}=(a x+b)(a x-b)$. That is, $a^{2} x^{2}-b^{2}=0$ if and only if $a x+b=0$ or $a x-b=0$.
$a x+b=0 \Rightarrow a x=-b \Rightarrow x=-\frac{b}{a}$ and $a x-b=0 \Rightarrow a x=b \Rightarrow x=\frac{b}{a}$.
Hence, the solutions to the equation $a^{2} x^{2}-b^{2}=0$ are $x=-\frac{b}{a}$ and $x=\frac{b}{a}$.

B. Graphs of Quadratic Functions

Exercises:

1. The quadratic formula tells us that $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$. For $x^{2}+x-4=0$, the solutions are:

$$
x=\frac{-1 \pm \sqrt{1^{2}-4(-4)}}{2}=\frac{-1 \pm \sqrt{17}}{2} .
$$

2. The solutions of the equation $2 x^{2}+x-7=0$ are:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-1 \pm \sqrt{1-4(2)(-7)}}{2(2)}=\frac{-1 \pm \sqrt{57}}{4} .
$$

3. The equation $x^{2}-2 x=5$ can be written as $x^{2}-2 x-5=0$. Now, we can use the quadratic formula. The solutions are:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{2 \pm \sqrt{4-4(1)(-5)}}{2(1)}=\frac{2 \pm \sqrt{24}}{2}=1 \pm \sqrt{6} .
$$

4. $2 x^{2}=3 x+11 \Rightarrow 2 x^{2}-3 x-11=0$.

The solutions are:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{3 \pm \sqrt{9-4(2)(-11)}}{2(2)}=\frac{3 \pm \sqrt{97}}{4} .
$$

5. The graph of $f(x)=x^{2}-4$ is obtained by shifting the graph of $y=x^{2}-4$ units in the y direction.

We can easily see from the graph that the x intercepts are $x= \pm 2$, the y intercept is $y=-4$, and the vertex is $(0,-4)$.
We can also use the following reasoning to find the vertex and the x intercepts (which is very useful when we do not know the graph of the function):

- The x coordinate of the vertex of $f(x)=x^{2}-4$ is given by $-\frac{b}{2 a}=-\frac{0}{2}=0$. Since $f(0)=-4$, the vertex is $(0,-4)$.
- The x intercepts are the solutions of $x^{2}-4=0$. By factoring or by using the quadratic formula, we can easily get that $x= \pm 2$ are the solutions and hence the x intercepts.
- The y intercept is $f(0)=-4$.

6. It is not easy to draw the graph of $f(x)=2 x^{2}-4 x+5$ by using $y=x^{2}$. So, this time let's firstly find the vertex and x intercepts and then draw the graph accordingly.
The x coordinate of the vertex of $f(x)=2 x^{2}-4 x+5$ is given by $-\frac{b}{2 a}=-\frac{-4}{4}=1$. Since $f(1)=2(1)^{2}-4(1)+5=3$, the vertex is $(1,3)$.

The x intercepts are the solutions of $2 x^{2}-4 x+5=0$. However, for this equation the discriminant is $b^{2}-4 a c=16-4(2)(5)=-24<0$ which means that there are no solutions. Hence, there are no x intercepts.
Since there are no x intercepts, we need another point on the graph to be able to draw it. We have $f(0)=5$, so the y intercept is $(0,5)$.
Now, since $a>0$, draw a parabola with vertex $(1,3)$ that turns up and passes through $(0,5)$. Remember that the arms of the parabola are symmetric.

7. $f(x)=-x^{2}-2 x-3=-\left(x^{2}+2 x+3\right)=-(x+1)^{2}-2$. Hence, the graph of $f(x)=-x^{2}-2 x-3=-(x+1)^{2}-2$ can be obtained by shifting the graph of $f(x)=x^{2}$ firstly -1 units in the x direction and then -2 units in the y direction. The vertex is : $(-1,-2)$ and the parabola is turning down. And this shows that there are no x intercepts. The y intercept is $y=f(0)=-3$.

8. To draw the graph of $f(x)=-3 x^{2}+12$:

- Scale $f(x)=-x^{2}$ by 3 to get $f(x)=-3 x^{2}$
- Shift $f(x)=-3 x^{2} 12$ units in y direction.

As it is seen from the graph, the vertex is $(0,12)$ and the x intercepts are $x= \pm 2$. The y intercept is $y=12$.

C. Applications

1. Their fixed costs are $\$ 10,000$ per month and each pair costs $\$ 20$, so the monthly cost is:

$$
C(x)=10,000+20 x .
$$

They can sell x pairs of sandals each month at a price of $40-\frac{x}{100}$, then their monthly revenue is:

$$
R(x)=x\left(30-\frac{x}{1000}\right)=30 x-\frac{x^{2}}{1000}
$$

Thus, the profit function is:

$$
P(x)=R(x)-C(x)=30 x-\frac{x^{2}}{1000}-(10,000+20 x)=-\frac{x^{2}}{1000}+10 x-10,000 .
$$

The graph of the profit function is:

So the break even occurs when approximately 1,010 or 99,030 pairs of sandals are produced. Profit is maximized by selling 50,020 pairs of sandals.
2. We know that $s(t)=-4.9 t^{2}+v_{0} t+s_{0}$ gives the position of a particle at a time $t \geq 0$. Here $v_{0}=25$ and $s_{0}=25$, then;

$$
s(t)=-4.9 t^{2}+25 t+25
$$

The particle strikes the ground at the time t where $s(t)=-4.9 t^{2}+25 t+25=0$. This occurs when $t \approx 5.95$, that is the particle stays in the air for approximately 5.95 seconds.
The particle is at the maximum height when $t=-\frac{25}{2(-4.9)} \approx 2.55$.
And the maximum height that the particle reaches is : $s(2.55)=56.89$ meters.

