QUADRATIC FUNCTIONS

А.

Exercises:

1.
$$(-2x+1)(3x-5) = -2x(3x-5) + 1(3x-5) = -6x^2 + 10x + 3x - 5 = -6x^2 + 13x - 5$$
.

2.
$$(x-7)(5x-6) = x(5x-6) - 7(5x-6) = 5x^2 - 6x - 35x + 42 = 5x^2 - 41x + 42$$
.

3.

×	3 <i>x</i>	-5
-2x	$-6x^2$	10 <i>x</i>
1	3 <i>x</i>	-5
Sum:	$-6x^2 + 10x + 3x - 5$	
(-2x+1)(3x-5) =	$-6x^2 + 13x - 5$	

4.

×	5 <i>x</i>	-6
x	$5x^2$	-6x
-7	-35x	42
Sum:	$5x^2 - 6x - 35x + 42$	
(x-7)(5x-6) =	$5x^2 - 41x + 42$	

5.
$$(-2x+1)(3x-5) = -6x^2 + 10x + 3x - 5 = -6x^2 + 13x - 5$$
.

6.
$$(x-7)(5x-6) = 5x^2 - 6x - 35x + 42 = 5x^2 - 41x + 42$$
.

$$7.\left(-2x+\frac{1}{2}\right)(5x-2) = -2x(5x-2) + \frac{1}{2}(5x-2) = -10x^2 + 4x + \frac{5}{2}x - 1 = -10x^2 + \frac{13}{2}x - 1.$$

8. We'll expand it by using the distributive property; $(10x+1)(10x-1) = 10x(10x-1) + 1(10x-1) = 100x^2 - 10x + 10x - 1 = 100x^2 - 1$.

9. Let's use the FOIL method; $(ax+b)(ax-b) = a^2x^2 - axb + bax - b^2 = a^2x^2 - b^2$. 10. To factor $x^2 + 3x - 4$, we need to find *p* and *q* so that pq = -4 and p + q = 3. If you try some possibilities for pq = -4, you'll see that when p = 4 and q = -1 both conditions are satisfied.

Hence, $x^2 + 3x - 4 = (x+4)(x-1)$.

11. To factor the expression $3x^2 + 4x + 1$, we need to find *r*, *p*, *s* and *q* so that $3x^2 + 4x + 1 = (rx + p)(sx + q)$. That is, rs = 3, ps + rq = 4 and pq = 1.

Let's try the easiest case; p = q = 1 and r = 3, s = 1. Two of the conditions are satisfied (rs = 3 and pq = 1), but we need to check the third: ps + rq = (1)(1) + (3)(1) = 4. So, these are the numbers we're looking for. Hence, $3x^2 + 4x + 1 = (3x + 1)(x + 1)$.

12. $x^2 - 16$ is an expression which is suitable to use the difference of two squares. Notice that $4^2 = 16$. Hence, $x^2 - 16 = (x - 4)(x + 4)$.

13. $x^2 - 100$ is also suitable for the difference of two squares. Since $10^2 = 100$, we get: $x^2 - 100 = (x - 10)(x + 10)$.

14. Firstly, notice that we can not use the difference of two squares here (basically since there is no "difference" here, this is a sum).

To factor $x^2 + 100$, we need p and q so that pq = 100 and p + q = 0. There are lots of couples of numbers satisfying the first condition, but it is important to remember that to have p + q = 0, p and q must be of opposite sign (we know that they are not 0 since their product is not). However, if p and q have opposite signs then their product should be negative. For example, p = 10, $q = -10 \Rightarrow pq = -100$. Hence, it is impossible to find such two numbers. The expression $x^2 + 100$ is not a product of linear factors with integer coefficients.

15. To factor $x^2 + x + 6$, we need p and q so that pq = 6 and p + q = 1.

p and q so that pq = 6	p+q
1 and 6	7
2 and 3	5

Hence, as you can observe from the table, $x^2 + x + 6$ does not have linear factors with integer coefficients.

16. In Exercise-9, we expanded the expression (ax+b)(ax-b) and we got $(ax+b)(ax-b) = a^2x^2 - b^2$. So, the factors of $a^2x^2 - b^2$ are (ax+b) and (ax-b); $a^2x^2 - b^2 = (ax+b)(ax-b)$.

17. We know from Exercise-10 that $x^2 + 3x - 4 = (x+4)(x-1)$. So, $x^2 + 3x - 4 = 0$ if and only if x+4=0 or x-1=0. Hence, the solutions of the equation $x^2 + 3x - 4 = 0$ are x = -4 and x = 1.

18. We know that $3x^2 + 4x + 1 = (3x+1)(x+1)$ (See Exercise-11). Hence, $3x^2 + 4x + 1 = 0$ if and only if 3x+1=0 or x+1=0.

That is, the solutions to $3x^2 + 4x + 1 = 0$ are $x = -\frac{1}{3}$ and x = -1.

19.We have $x^2 - 16 = (x-4)(x+4)$, so $x^2 - 16 = 0$ if and only if x-4=0 or x+4=0. Thus, the solutions of the expression $x^2 - 16 = 0$ are x = 4 and x = -4.

20. Since $x^2 - 100 = (x - 10)(x + 10)$, $x^2 - 100 = 0$ if and only if x - 10 = 0 or x + 10 = 0. Hence, the solutions to $x^2 - 100 = 0$ are x = 10 and x = -10.

21. As we saw before, $a^2x^2 - b^2 = (ax+b)(ax-b)$. That is, $a^2x^2 - b^2 = 0$ if and only if ax+b=0 or ax-b=0. $ax+b=0 \Rightarrow ax=-b \Rightarrow x=-\frac{b}{a}$ and $ax-b=0 \Rightarrow ax=b \Rightarrow x=\frac{b}{a}$. Hence, the solutions to the equation $a^2x^2 - b^2 = 0$ are $x = -\frac{b}{a}$ and $x = \frac{b}{a}$.

B. Graphs of Quadratic Functions

Exercises:

1. The quadratic formula tells us that $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. For $x^2 + x - 4 = 0$, the solutions are:

$$x = \frac{-1 \pm \sqrt{1^2 - 4(-4)}}{2} = \frac{-1 \pm \sqrt{17}}{2}.$$

2. The solutions of the equation $2x^2 + x - 7 = 0$ are:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1 - 4(2)(-7)}}{2(2)} = \frac{-1 \pm \sqrt{57}}{4}.$$

3. The equation $x^2 - 2x = 5$ can be written as $x^2 - 2x - 5 = 0$. Now, we can use the quadratic formula. The solutions are:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{2 \pm \sqrt{4 - 4(1)(-5)}}{2(1)} = \frac{2 \pm \sqrt{24}}{2} = 1 \pm \sqrt{6}$$

4. $2x^2 = 3x + 11 \implies 2x^2 - 3x - 11 = 0$. The solutions are:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{3 \pm \sqrt{9 - 4(2)(-11)}}{2(2)} = \frac{3 \pm \sqrt{97}}{4}$$

5. The graph of $f(x) = x^2 - 4$ is obtained by shifting the graph of $y = x^2 - 4$ units in the y direction.

We can easily see from the graph that the *x* intercepts are $x = \pm 2$, the y intercept is y = -4, and the vertex is (0, -4).

We can also use the following reasoning to find the vertex and the *x* intercepts (which is very useful when we do not know the graph of the function):

- The *x* coordinate of the vertex of $f(x) = x^2 4$ is given by $-\frac{b}{2a} = -\frac{0}{2} = 0$. Since f(0) = -4, the vertex is (0, -4).
- The *x* intercepts are the solutions of $x^2 4 = 0$. By factoring or by using the quadratic formula, we can easily get that $x = \pm 2$ are the solutions and hence the *x* intercepts.
- The y intercept is f(0) = -4.

6. It is not easy to draw the graph of $f(x) = 2x^2 - 4x + 5$ by using $y = x^2$. So, this time let's firstly find the vertex and x intercepts and then draw the graph accordingly.

The *x* coordinate of the vertex of $f(x) = 2x^2 - 4x + 5$ is given by $-\frac{b}{2a} = -\frac{-4}{4} = 1$. Since $f(1) = 2(1)^2 - 4(1) + 5 = 3$, the vertex is (1,3).

The *x* intercepts are the solutions of $2x^2 - 4x + 5 = 0$. However, for this equation the discriminant is $b^2 - 4ac = 16 - 4(2)(5) = -24 < 0$ which means that there are no solutions. Hence, there are no *x* intercepts.

Since there are no x intercepts, we need another point on the graph to be able to draw it. We have f(0) = 5, so the y intercept is (0,5).

Now, since a > 0, draw a parabola with vertex (1,3) that turns up and passes through (0,5). Remember that the arms of the parabola are symmetric.

7. $f(x) = -x^2 - 2x - 3 = -(x^2 + 2x + 3) = -(x+1)^2 - 2$. Hence, the graph of $f(x) = -x^2 - 2x - 3 = -(x+1)^2 - 2$ can be obtained by shifting the graph of $f(x) = x^2$ firstly -1 units in the *x* direction and then -2 units in the *y* direction. The vertex is : (-1,-2) and the parabola is turning down. And this shows that there are no *x* intercepts. The *y* intercept is y = f(0) = -3.

- 8. To draw the graph of $f(x) = -3x^2 + 12$:
 - Scale $f(x) = -x^2$ by 3 to get $f(x) = -3x^2$
 - Shift $f(x) = -3x^2$ 12 units in y direction.

As it is seen from the graph, the vertex is (0,12) and the *x* intercepts are $x = \pm 2$. The *y* intercept is y = 12.

C. Applications

1. Their fixed costs are 10,000 per month and each pair costs 20, so the monthly cost is:

$$C(x) = 10,000 + 20x$$
.

They can sell x pairs of sandals each month at a price of $40 - \frac{x}{100}$, then their monthly revenue is:

$$R(x) = x \left(30 - \frac{x}{1000} \right) = 30x - \frac{x^2}{1000}$$

Thus, the profit function is:

$$P(x) = R(x) - C(x) = 30x - \frac{x^2}{1000} - (10,000 + 20x) = -\frac{x^2}{1000} + 10x - 10,000.$$

The graph of the profit function is:

So the break even occurs when approximately 1,010 or 99,030 pairs of sandals are produced. Profit is maximized by selling 50,020 pairs of sandals.

2. We know that $s(t) = -4.9t^2 + v_0t + s_0$ gives the position of a particle at a time $t \ge 0$. Here $v_0 = 25$ and $s_0 = 25$, then;

$$s(t) = -4.9t^2 + 25t + 25.$$

The particle strikes the ground at the time *t* where $s(t) = -4.9t^2 + 25t + 25 = 0$. This occurs when $t \approx 5.95$, that is the particle stays in the air for approximately 5.95 seconds. The particle is at the maximum height when $t = -\frac{25}{2(-4.9)} \approx 2.55$.

And the maximum height that the particle reaches is : s(2.55) = 56.89 meters.