
7. The Real Number System 
 
At the end of the last section we learned that the set of irrational numbers is uncountable, 
and consequently it is MUCH LARGER than . One of the difficulties that you might 
have thinking about this could arise from your lack of experience with irrational numbers. 
It turns out that they are everywhere. Theorem 5.13 and definition 6.16 tell us that the 
irrational numbers are the numbers which can be written in decimal form without any 
repeated pattern in the decimal expansion. We can use this to devise strategies to create 
irrational numbers. For example, we could create a decimal expansion that starts with a 0, 
followed by a 1, followed by a 0, followed by two 1’s, followed by a 0, followed by three 
1’s, etc... 
 

1 2 3 4 5 6 7

.010110111011110111110111111011111110  

 
This decimal expansion does not eventually repeat itself indefinitely. Consequently, this 
number is irrational. You can use other ideas to create many other irrational numbers. 
 
There are also very well known irrational numbers.  
 
Theorem 7.1: 2  is an irrational number. 
 

Proof: Suppose 2  is a rational number. Let a
b

  be the reduced form of the rational 

number 2  ( ,  , 0a b b∈ ≠ ). 
So,  2a b= . This implies that 2 22a b= . Hence, 2a  is an even integer. That is, a is also 
even (the square of an odd number is odd, the square of an even number is even). 
Let 2a k=  where k∈ . 

2 2 2 2 2 22      4 2      2a b k b b k= ⇒ = ⇒ = . 
Hence, 2b  is even. This implies that b is also even which contradicts to our assumption 

that a
b

 is in the reduced form.  Therefore, 2  is irrational.  

 
Theorem 7.2: If n∈  and n  is not a natural number, then n  is an irrational 
number. 
 
Proof: Let n∈  and n  is not a natural number. That is, n is not a perfect square. 
 

Suppose n  is a rational number. Let a
b

  be the reduced form of the rational number 

n  ( ,  , 0a b b∈ ≠ ). 



2

2    a an n
b b

= ⇒ = . We know that n is a natural number; i.e., 
2

2
a
b

 is a natural number. 

This means that  2b  divides 2a . And since a and b are integers, this implies that b divides 
a, which is a contradiction to our assumption. 
 
Hence, if n is a natural number which is not a perfect square, then n  is irrational.  
 
There are other well known irrational numbers. For example, Johann Lambert showed in 
1760 that π  is an irrational number. This particular irrational number can be constructed 
geometrically. For example, a circle with radius 1 has area π , and a circle with radius ½ 
has circumference π .  
 

 
 
We show in the example below that it is also possible to use geometry to construct 
physical representations of the irrational numbers 2  and 3 . The main idea stems 
from the Pythagorean theorem. 
 
 
Theorem 7.3: (Pythagorean theorem) Suppose a right triangle has side lengths a, b and 
c as shown in the figure below. Then 2 2 2a b c+ = . 

 
 
Proof: Let’s start with a square whose side has length a b+  (see next page). 
 
 

1 
The area of this 

circle is p. 

a

b  
c



 
We get a new figure by joining the points separating the sides into two parts, a part with 
length a and another part with length b. Here is the figure; 

 
The figure formed is a square since all the triangles in the figure are congruent. Let’s say 
its one side is c units. Then, the area of the first square (the one in the first figure) must be 
equal to the sum of the areas of the triangles and the new square (the ones in the second 

figure). Hence, 2 2( ) 4
2

aba b c⎛ ⎞+ = +⎜ ⎟
⎝ ⎠

 (
2

ab  is the area of one triangle). 

2 2 2 2 2 2 2( ) 2 2     a b a ab b ab c a b c+ = + + = + ⇒ + = .   
 
 
The Pythagorean theorem can be used to construct 2  and 3 , as well as many other 
irrational numbers. 
 
Example 7.4: Give geometric constructions of 2  and 3 . 
 
Solution: We start with a right triangle whose legs have length 1 as shown in the figure 
below. 
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We can use the Pythagorean theorem to conclude that 2 2 21 1 1 1 2c = + = + = . 
Consequently, 2c = . So we have constructed a right triangle that has a hypotenuse with 
length 2 . We can build on this picture as shown below by placing another right triangle 
on the hypotenuse of this triangle as shown. 

 
From the Pythagorean theorem, the value of d satisfies ( )2

2 21 2 1 2 3d = + = + = . 

Consequently, 3d = . 
 
As stated above, there are many more irrational numbers, and in fact, there are more 
irrational numbers than rational numbers. Also, just like the rational numbers, the 
irrational numbers are nearly everywhere on the real line. 
 
Theorem 7.5: The irrational numbers are a dense subset of . 
 
Proof: Omitted. 
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c



Approximating Irrational Numbers With Rational Numbers 
 
We learned earlier that the rational numbers are dense in . This is important, because 
these are the numbers that calculators and other computing devises display when we ask 
for an irrational number such as 3 . One natural question is “How does a calculator get 
a number when we ask for it?” First, let’s dispel the widely help belief that calculators 
have all of the numbers that they need stored in memory. This is IMPOSSIBLE, since 
there are infinitely many numbers. Actually, calculators store algorithms (recipes) for 
creating numbers on demand. Since a calculator only displays numbers to 11-16 decimal 
places (depending upon the calculator), the recipe only needs to give an approximation 
that is accurate within this number of decimal places. One such recipe is the one given 
below for approximating n  whenever n is a natural number. The process comes from a 
technique from calculus known as Newton’s method, but it is not necessary to know 
calculus to use the method. 
 
 

Approximating n  
Let 0x n= . 

Define 1 0
0

1
2

nx x
x

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
. 

Define 2 1
1

1
2

nx x
x

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
. 

Define 3 2
2

1
2

nx x
x

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
. 

Define 4 3
3

1
2

nx x
x

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
. 

Continue until 11 11
110 10k kx x− −
−− < − <  

 
The number 1110−  is simply an example of what might be used in practice. The point is 
that the process is stopped when successive values are very close to one another. The 
algorithm above typically converges very quickly! We see this in the example below. 
 
Example 7.6: Use the algorithm to approximate 2 . 
 
Solution: In this case, 2n = . So, 0 2x = . Substituting this into the formula above for 1x  
gives 

1
1 2 32
2 2 2

x ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

 

Substituting this into the formula for 2x  gives 



2 1
1

1 1 3 2 1 3 4 17 1.416
2 2 2 3/ 2 2 2 3 12

nx x
x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = + = + = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

We can see that 2x  is already a reasonable approximation to the calculator value for 

2 1.41421356237310≈ . Continuing,  

3
1 17 2 577 1.41421568627451
2 12 17 /12 408

x ⎛ ⎞= + = ≈⎜ ⎟
⎝ ⎠

 

4 3
3

1 2 1.41421356237469
2

x x
x

⎛ ⎞
= + ≈⎜ ⎟

⎝ ⎠
 

5 4
4

1 2 1.41421356237310
2

x x
x

⎛ ⎞
= + ≈⎜ ⎟

⎝ ⎠
 

That’s amazing! We can see that after 3 steps we already have a very good 
approximation, and in 5 steps, we have the same value as our calculator approximation 
for 2 . Of course, your calculator can do this series of calculations in a fraction of a 
second, so it almost seems like your calculator already knows the value when you ask for 
it. That’s why some people believe (incorrectly) that calculators keep a table of all of 
these types of values in memory. 
 
It is also possible to give an extension of this algorithm that gives roots of numbers other 
than square roots. We give one of these below for computing p n  whenever ,n p∈  and 

2p ≥ . In the case of odd roots, this algorithm only returns the approximation to the 
positive root. 
 

Approximating p n  
Let 0x n= . 

Define ( )1 0 1
0

1 1 p

nx p x
p x −

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
. 

Define ( )2 1 1
1

1 1 p

nx p x
p x −

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
. 

Define ( )3 2 1
2

1 1 p

nx p x
p x −

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
. 

Define ( )4 3 1
3

1 1 p

nx p x
p x −

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
. 

Continue until 11 11
110 10k kx x− −
−− < − <  

 
Notice how this algorithm reduces to the earlier one when 2p = . 
 
Example 7.7: Use the algorithm above to approximate 3 5 . 
 



Solution: In this case 3p =  and 5n = . So we start by setting 0 5x = . Then 

( )1 3 1

1 5 173 1 5 3.4
3 5 5

x −

⎛ ⎞= − + = =⎜ ⎟
⎝ ⎠

 

( )2 1 3 1
1

1 53 1 2.41084198385236
3

x x
x −

⎛ ⎞
= − + ≈⎜ ⎟

⎝ ⎠
 

( )3 2 3 1
2

1 53 1 1.89398315995149
3

x x
x −

⎛ ⎞
= − + ≈⎜ ⎟

⎝ ⎠
 

( )4 3 3 1
3

1 53 1 1.72727396648750
3

x x
x −

⎛ ⎞
= − + ≈⎜ ⎟

⎝ ⎠
 

( )5 4 3 1
4

1 53 1 1.71014860175656
3

x x
x −

⎛ ⎞
= − + ≈⎜ ⎟

⎝ ⎠
 

( )6 5 3 1
5

1 53 1 1.70997596410721
3

x x
x −

⎛ ⎞
= − + ≈⎜ ⎟

⎝ ⎠
 

( )7 6 3 1
6

1 53 1 1.70997594667670
3

x x
x −

⎛ ⎞
= − + ≈⎜ ⎟

⎝ ⎠
 

( )8 7 3 1
7

1 53 1 1.70997594667670
3

x x
x −

⎛ ⎞
= − + ≈⎜ ⎟

⎝ ⎠
 

Notice that we do not see any improvement from the seventh to the eighth value. Also, 
checking the calculator, we get the approximation for 3 5  given by 1.70997594667670 , 
so the agreement is excellent! 
 
The following TI-83 program can be used to observe the convergence of this process. 
 

ROOT 
: Disp  "APPROX THE P-TH" 
: Disp "ROOT OF N" 
: Prompt  P 
: Prompt  N 
: Disp   "HOW MANY STEPS? " 
: Prompt  M 
: N → X 
: For(I,1,M) 
: ((P-1)X+N/X^(P-1))/P → X 
: Disp  X 
: End 

 
The program ROOT approximates p n  using the algorithm above. It prompts the user for 
the values of p and n, and then it asks for the number of steps to be used in the algorithm. 
The program displays the output from the steps to the screen. Notice that only the steps 



that will fit on the screen will be visible. The screen shots below show the result of 
requesting an approximation of 3 5  using 8 steps and then requesting the TI-83 to give 
the its approximation for 3 5 . The values for the first four steps do not appear on the 
screen. Only the values for 5 6 7 8, , ,x x x x  appear. The agreement is very good, but the TI-
83 is not capable of the type of accuracy that we have displayed in the previous example.  
  

prgmROOT 
APPROX THE P-TH 
ROOT OF N 
P=?3 
N=?5 
HOW MANY STEPS 

M=?8 

1.710148602
1.709975964
1.709975947
1.709975947

Done
5^(1/3) 

1.709975947
 
 
Absolute Value 
 
So far, we have focused on algebraic properties of various subsets of the real line. In 
order to give more structure to , we need a measuring stick for computing distances 
between numbers. This is the role of absolute value. 
 
Definition 7.8: Let a∈  The absolute value of a is given by 

if  0
if  0

a a
a

a a
≥⎧

= ⎨− <⎩
 

 
The use of the expression a−  in the definition of a  is sometimes a point of confusion. 

However, notice that a a= −  only when 0a < , and the negative of a negative is 
positive!  
 
The absolute value function has some very important properties. 
 
Theorem 7.9: Let ,a b∈ . 

• 0a ≥ , and 0a =  if and only if 0a = . 

• ab a b=  

• a a= −  

• a b a b+ ≤ +  (triangle inequality) 

• If 0b > , then a b<  if and only if b a b− < < . 
 

 
Proof:  The bulleted items are proved below. 
 



• We know that 
if  0
if  0

a a
a

a a
≥⎧

= ⎨− <⎩
. Hence, a  is defined to be always non-

negative. If a is negative then –a is positive, so a  is always non-negative; 

0a ≥ . The facts 

o if 0a =  then 0a a= =   

o if 0a =  then 0a =  
 follow from the definition. 

• We need to deal with some cases here. 
Case-1: , 0a b ≥ . Then 0ab ≥ . So, ,  ,  and a a b b ab ab= = = . Hence 
ab ab a b= = . 

Case-2: , 0a b ≤ . Then 0ab ≥ . So, ,  ,  and a a b b ab ab= − = − = . Hence, 
( )( )ab ab a b a b= = − − = . 

Case-3: 0, 0a b< ≥ . Then, 0ab ≤ . So, ,  ,  and a a b b ab ab= − = = − . Thus, 
( )( )ab ab a b a b= − = − = . 

Therefore, in any case, ab a b= . 
• We have two cases here. 

Case-1: 0a ≥ . Then 0a− ≤ . So, we have a a=  and ( )a a a− = − − = ; i.e., 
a a= − . 

Case-2: 0a < . Then 0a− > . So, a a= −  and a a− = − ; i.e., a a= − . 
       Hence, a a= − . 
• It is important to observe that if a and b are non-negative real numbers, then a b≤  

if and only if 2 2a b≤ .   We know that a b+  and a b+  are non-negative 
numbers.  Moreover, 

( )

2 2

2 2

2 2

22 2

( )

           2

           2

           2 .

a b a b

a ab b

a ab b

a a b b a b

+ = +

= + +

= + +

≤ + + = +

 

 
Hence, by the observation, we can conclude that a b a b+ ≤ +  

• Since 
if  0
if  0

a a
a

a a
≥⎧

= ⎨− <⎩
,  a b<  implies that either a b<  or a b− < . But a b− <  

means a b> −  (just multiply both sides by -1). We also know that 0b > , which 
means b b− < . So, b−  is less than a, and a is less than b.  That is,  b a b− < < .  

 
 
 
 



Remark 7.10: The term “triangle inequality” used above comes from the extension of 
this idea to 2 and 3 dimensions. In the 2 dimensional setting, distances can be interpreted 
using vectors. The diagram below shows the vectors u, v and u+v.  

 
Notice that these vectors form a triangle and that 
the length of u+v will certainly be smaller than the 
length of u plus the length of v. The length of 
vectors is typically denoted using the same 
absolute value symbol as above. Consequently, 
this information can be written in the form 
 

u v u v+ ≤ + . 
 
 

Example 7.11: π π= , 3.24 3.14− = , 2 2= , 3 3
7 7

− = , and 0 0= . 

 
Example 7.12: Illustrate the points on the real number line which satisfy 4x = . 
 
Solution: There are only two values of x which satisfy 4x = ; namely,  4x = −  and 

4x = . We show these on the number line below. 

 
Example 7.13: Illustrate the points on the real number line which lie less than 3 units 
away from 4. 
 
Solution: The numbers which are less than 3 units away from 4 satisfy 4 3x − < . This 
implies 3 4 3x− < − < . Adding 4 across this inequality gives 1 7x< < . These values are 
shown on the number line below. Notice the open circles at 1 and 7 denoting that these 
values are not included. 

 
Exercises 

1. Use the algorithm in this section to approximate 5 7 . How many steps do you 
need to use to obtain the accuracy that your calculator gives? 

2. Create a table with 4 columns. The first column should have the header n and it 
should include the values 10, 20, ..., 200. The second column should have the 

1 7

-4 4

u+v v 

u 



header n , and it should include the calculator values for 10, 20, ..., 200n = . 
The third column should include the results of applying the algorithm above to 
approximate n  for each value of n using 5 steps. The fourth column should 
include the results of applying the algorithm using 10 steps. Do you see any 
noticeable difference in the performance for the different values of n? 

3. Repeat the exercise above using the values 1000, 2000, ..., 20000n = . This time 
include a 5th column which gives the result of using 15 steps. Do you see any 
noticeable difference in the performance for the different values of n? 

4. Illustrate the points on the real number line which are less than 3 units away from 
2 or less than 4 units away from -7. Also, write each of these requirements using 
absolute values and inequalities. 

5.  Illustrate the points on the real number line which are less than 1 units from -7 or 
less than 5 units from 6. Also, write each of these requirements using absolute 
values and inequalities. 

6. Illustrate the points on the real number line which satisfy the inequality 
2 5 7x + ≤ . 

7. Illustrate the points on the real number line which satisfy the inequality 
2 1 3x − ≤ . Hint: 3a ≤  if and only if 3 3a− ≤ ≤ . 

8. Illustrate the points on the real number line which satisfy the inequality 
2 3

2 1x
>

−
. Be careful! 

 
 
 

Solutions: 
 

1. In this case 5p =  and 7n = . So we start by setting 0 7x = . Then 

( )1 5 1

1 75 1 7 5.6005830903790
5 7

x −

⎛ ⎞= − + ≈⎜ ⎟
⎝ ⎠

 

( )2 1 5 1
1

1 75 1 4.48222296774677
5

x x
x −

⎛ ⎞
= − + ≈⎜ ⎟

⎝ ⎠
 

( )3 2 5 1
2

1 75 1 3.58924697411137
5

x x
x −

⎛ ⎞
= − + ≈⎜ ⎟

⎝ ⎠
 

( )4 3 5 1
3

1 75 1 2.87983315376313
5

x x
x −

⎛ ⎞
= − + ≈⎜ ⎟

⎝ ⎠
 

( )5 4 5 1
4

1 75 1 2.32422094279246
5

x x
x −

⎛ ⎞
= − + ≈⎜ ⎟

⎝ ⎠
 

( )6 5 5 1
5

1 75 1 1.90735213110943
5

x x
x −

⎛ ⎞
= − + ≈⎜ ⎟

⎝ ⎠
 



( )7 6 5 1
6

1 75 1 1.63166193804920
5

x x
x −

⎛ ⎞
= − + ≈⎜ ⎟

⎝ ⎠
 

( )8 7 5 1
7

1 75 1 1.50287834677902
5

x x
x −

⎛ ⎞
= − + ≈⎜ ⎟

⎝ ⎠
 

( )9 8 5 1
8

1 75 1 1.47673339845297
5

x x
x −

⎛ ⎞
= − + ≈⎜ ⎟

⎝ ⎠
 

( )10 9 5 1
9

1 75 1 1.47577440955909
5

x x
x −

⎛ ⎞
= − + ≈⎜ ⎟

⎝ ⎠
 

( )11 10 5 1
10

1 75 1 1.47577316159347
5

x x
x −

⎛ ⎞
= − + ≈⎜ ⎟

⎝ ⎠

( )12 11 5 1
11

1 75 1 1.47577316159455
5

x x
x −

⎛ ⎞
= − + ≈⎜ ⎟

⎝ ⎠
 

( )13 12 5 1
12

1 75 1 1.47577316159455
5

x x
x −

⎛ ⎞
= − + ≈⎜ ⎟

⎝ ⎠
 

 
 

Notice that we do not see any improvement from the 12th  to the 13th  value. Also, 
checking the calculator, we get the approximation for 5 7  given by 1.47577316159455. 

 
2. Here is the table that shows the calculator values of square roots of 10,20,…,200, 

together with the values obtained by using the algorithm for 5 and 10 steps. 
 

N n  after 5 steps after 10 steps 
10 3.16227766 3.162277665 3.16227766 
20 4.472135955 4.472140217 4.472135955 
30 5.477225575 5.477306379 5.477225575 
40 6.32455532 6.325023209 6.32455532 
50 7.071067812 7.072628276 7.071067812 
60 7.745966692 7.749784171 7.745966692 
70 8.366600265 8.374286298 8.366600265 
80 8.94427191 8.957833156 8.94427191 
90 9.486832981 9.508604615 9.486832981 
100 10 10.03257851 10 
110 10.48808848 10.5342704 10.48808848 
120 10.95445115 11.0171801 10.95445115 
130 11.40175425 11.48407658 11.40175425 
140 11.83215957 11.93718797 11.83215957 
150 12.24744871 12.37833279 12.24744871 
160 12.64911064 12.80901331 12.64911064 
170 13.03840481 13.23048364 13.03840481 
180 13.41640786 13.64380042 13.41640786 



190 13.78404875 14.04986116 13.78404875 
200 14.14213562 14.44943382 14.14213562 

 
 
 
 

3. Here is the table showing also the values found by using the algorithm for 5,10 
and 15 steps. 

 
 
 

n n  after 5 steps after 10 steps after 15 steps 
1000 31.6227766 41.24542607 31.6227766 31.6227766 
2000 44.72135955 72.81065909 44.72135955 44.72135955 
3000 54.77225575 104.172262 54.77225575 54.77225575 
4000 63.2455532 135.4793778 63.2455532 63.2455532 
5000 70.71067812 166.7640805 70.71067812 70.71067812 
6000 77.45966692 198.0373991 77.45966692 77.45966692 
7000 83.66600265 229.304146 83.66600266 83.66600265 
8000 89.4427191 260.5667563 89.44271912 89.4427191 
9000 94.86832981 291.8265942 94.86832988 94.86832981 
10000 100 323.0844833 100.0000003 100 
11000 104.8808848 354.3409506 104.8808855 104.8808848 
12000 109.5445115 385.5963486 109.5445132 109.5445115 
13000 114.0175425 416.8509223 114.0175461 114.0175425 
14000 118.3215957 448.1048471 118.3216029 118.3215957 
15000 122.4744871 479.358252 122.4745005 122.4744871 
16000 126.4911064 510.6112338 126.4911299 126.4911064 
17000 130.3840481 541.8638668 130.3840874 130.3840481 
18000 134.1640786 573.1162088 134.1641416 134.1640786 
19000 137.8404875 604.3683055 137.8405847 137.8404875 
20000 141.4213562 635.6201936 141.4215015 141.4213562 

 
 
 
4. The points less that 3 units away from 2 satisfy the inequality: 2 3x − < . So, 

3 2 3x− < − < . If we add 2 to all sides of inequality, we get : 1 5x− < < . 

 
 

-1 5



The points less than 4 units away from -7 satisfy the inequality:  ( 7) 4x − − < , i.e. 

7 4x + < . Hence, 4 7 4x− < + < . If we subtract 7 from all sides of the inequality, we 
get: 11 3x− < < − . 
 

 
 
5. We’re looking for real numbers satisfying  7 1x + <  or  6 5x − < . 

7 1    1 7 1    8 6x x x+ < ⇒ − < + < ⇒ − < < − , 

6 5    5 6 5    1 11x x x− < ⇒ − < − < ⇒ < < . 
So we need real numbers between -8 and -6, or between 1 and 11. 

 
 
 
6. 2 5 7    7 2 5 7    12 2 2    6 1x x x x+ ≤ ⇒ − ≤ + ≤ ⇒ − ≤ ≤ ⇒ − ≤ ≤ . 
Hence, the real numbers satisfying this inequality are: 
 

 
 
7. 2 2 21 3    3 1 3   2 4x x x− ≤ ⇒ − ≤ − ≤ ⇒ − ≤ ≤ . We know that 2 0x ≥ , so the 

inequality becomes; 20 4x≤ ≤ , i.e. 0 2x≤ ≤ . 
 
 

 
 

0 2 

-6 1 

-8 -6 1 11 

-11 -3 



8. Since 2 1 0x − ≥ (actually in this case 2 1 0x − > ), we can multiply the inequality 

by 2 1x − ;     2 3    2 3 2 1
2 1

x
x

> ⇒ > −
−

. If we divide both side by 3(we can do 

this, 3>0), we get: 
2 2 2 1 5 1 52 1     2 1     2     
3 3 3 3 3 6 6

x x x x− < ⇒ − < − < ⇒ < < ⇒ < < . Hence, the 

real numbers satisfying this inequality are: 
 

 
1/6 5/6 


