
6. Cardinality And The Strange Nature Of Infinity 
 
There is no confusion about the size of sets that have finitely many elements. For 
example, everyone will agree that the sets 
 

{ }2, 1.5, 4 / 7, 0, 511A = −  
 

and 
 

{ }, , , , , ,B a b c d e f g=  
 

have a different number of elements. In fact, A has 5 elements and B has 7 elements. It is 
also clear that A is a smaller set than B. Interestingly, as we will see below, things are not 
nearly as predictable when sets contain infinitely many elements. 
 
Definition 6.1: Let A be a set. If A is the empty set then the cardinality of A is 0. If A 
contains exactly n elements, for some n∈ , then we say that the cardinality of A is n. 
In either case, we denote the cardinality of A by A , and we say that A is a finite set 
(because its cardinality is a finite number). Otherwise, we say that A is an infinite set. 
 
Example 6.2: The set { }2, 1.5, 4 / 7, 0, 511A = −  listed above is a finite set and the 

cardinality of A is 5; i.e. 5A = . 
 
Example 6.3: The set of even natural numbers is an infinite set. 
 
It seems natural to compare the sizes of infinite sets. In fact, there are a number of 
intuitive feelings that might lead us to make some (seemingly) obvious conclusions. For 
example, if we let E denote the set of even natural numbers, then E and  are both 
infinite sets. However, it seems as though E has only half as many elements as .  
 

{ 2, 4, 6, 8, 10, 12, }
{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, }

E =
=

 

 
So, we might be tempted to say that E  is smaller than . It also seems as though the 
set  is less than half the size of the set . 
 

{ 1, 2, 3, 4, 5, }
{ 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }

=
= − − − − −

 

 
So we might be tempted to say that  is smaller than . Finally, the size of  seems 

to completely dwarf the size of either  or , so we might be tempted to say that  is 



larger than both  and . Unfortunately, all of these conclusions are incorrect! In 
addition, if you are thinking “Of course they are incorrect. Each of these sets is infinite, 
so their cardinality is the same.” then you are also wrong. In fact, it turns out that 

= = < ! There are also infinite sets which are much bigger than . For 
example, the set of real valued functions whose domains are  and whose ranges are 
contained in  is a much bigger set than . There are also other sets that are much 
bigger than this set. In fact, there are infinitely many degrees of infinity. We discuss only 
the smallest two below. Before we begin, we give a definition that seems to have nothing 
to do with counting the elements in a set. 
 
Definition 6.4: Let A and B be sets and suppose f is a function with domain A and range 
contained in B. We say that f is a one-to-one (or 1-1) function if and only if 

( ) ( )f a f b=  implies a b= . 
 
Definition 6.5: Let A and B be infinite sets. We say that A B=  if and only if there is a 

one-to-one function f whose domain is A and whose range is B. We say that A B≤  if 
and only if there is a one-to-one function f whose domain is A and whose range is 
contained in B. We say that A B<  if and only if A B≤  and there does not exist a one-
to-one function f whose domain is A and whose range is B. 
 
Definition 6.6: Let A be a  set. We say that A is a countable set if and only if A is a finite 
set or A is an infinite set and A = . We say A is a countably infinite set if and only if 
A is an infinite set which is countable. We say A is an uncountable set (or equivalently, 
an uncountably infinite set) if and only if A is not a countable set. 
 
The next theorem tells us that  is the smallest infinite set. 
 
Theorem 6.7: If A is an infinite set then A≤ . 
 
Proof: We know that the smallest infinite sets are countable ones. If A is an infinite set, 
then it is at least countable(i.e., countable or uncountable). Therefore, A≤ .  
 
Remark 6.8: According to the theorem and definition above, the sets which are 
countably infinite are the smallest infinite sets. Notice that  is certainly a countably 
infinite set since the identity function ( )f n n=  is one-to-one from  onto . 
 
Theorem 6.9: Let A be an uncountable set. Then A is an infinite set and A< . 
 
Proof: A is an uncountable set implies by definition that it is an infinite set. 



As noted above, the sets which are countably infinite are the smallest infinite sets. Any 
set which is uncountably infinite has a bigger cardinality than the cardinality of . 
Hence, A< .  
 
Example 6.10: The set of even natural numbers E is a countably infinite set. 
Consequently, E = . 
 
Solution: We visualize E and  as shown below. The arrows are inserted to help us 
construct a one-to-one function from  to E. 
 

{ 2 4, 6 8, 10 12, 14 16, 18 20, 22 24, }

{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, }

E =

=
 

 
It appears as though the function ( ) 2f n n=  will give a one-to-one function with domain 

 and range E. As a result, E is countably infinite and E = . 
 
Example 6.11: The set  is a countably infinite set. Consequently, = . 
 
Solution: We visualize  and  as shown below. The arrows are inserted to help us 
construct a one-to-one function from  to . 
 

{ 11, 9, 7, 5, 3, 1, 2, 4, 6, 8, 10, }

{ 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }

=

= − − − − −
 

 
At first glance, the illustration above might not seem helpful. However, notice that the 
even natural numbers are all paired with an integer that is half of its value. Also, for the 
odd natural numbers, if we consider the ones that are greater than 3, subtract one from 
their value and then multiply by -1, we get the mapping shown above. We can summarize 
this by defining the function 

( )
( )

0 if  1
n/2 if   is even

1 / 2 if   is odd and 3

n
f n n

n n n

⎧ =
⎪= ⎨
⎪− − ≥⎩

 

You can verify that f corresponds to the arrows shown above, and that f is a one-to-one 
function with domain  and range . As a result,  is a countably infinite set and 

= . 
 
Theorem 6.12: Suppose A and B are infinite sets with A B⊆ . If B is countably infinite, 
then A is countably infinite and A B= = . 



 
Proof: Since A is an infinite set, it is either countably infinite or uncountably infinite. 
A B⊆  implies that B may have more elements than A, so the cardinality of A can not be 
bigger than the cardinality of B; A B≤ . Since B is countably infinite, A can not be an 

uncountably infinite set. Hence, A is a countably infinite set; A B= = .  
 
Theorem 6.13: Suppose A and B are sets and A is a countably infinite set. If there is a 
one-to-one function whose domain is A and whose range is B then B is countably infinite. 
 
Proof: We know that A B=  since there is a one-to-one function f whose domain is A 
and whose range is B(see Definition 6.5). Hence, A is countably infinite implies that B is 
also a countably infinite set.  
 
Example 6.14: The set  is a countably infinite set. That is, = . 
 
Solution: Notice that there are a lot of representations for any given rational number. For 

example, 1 2 3
2 4 6
= = = . However, there is one reduced form for a rational number. We 

say q∈  is written in reduced form if and only if either q is written as an integer or q 
is written in the form /a b  where ,a b∈  with 2b ≥  and ( )gcd , 1a b = . We will use the 
reduced form of a rational number to create a one-to-one function from  to an infinite 
subset of . Once we do this, from theorem 6.12 above, this subset must be countably 
infinite, and consequently it will follow from theorem 6.13 that  is countably infinite. 
Our strategy is to use the idea of counting in base 11. To this end, let  be the single 
digit representation for 10 in base 11. Now, define 
 

( ) 11

11

if    is an integer
 

if   is not an integer and /  is the reduced form of 
q q

f q
a b q a b q
⎧

= ⎨
⎩

 

 
For example,  

( ) ( )1112 12 1 11 2 13f = = + =   
and  

( ) ( ) ( )( )2
113 / 5 3 5 3 11 10 11 5 478f = = + + =  

You can check that f is a one-to-one function with domain  and range contained in . 
Also, the range of f is certainly infinite, so the range of f is countably infinite by theorem 
6.12. Therefore, from theorem 6.13,  is countably infinite and = . 
 
Theorem 6.15: If A and B are countable sets, then A B∪  is a countable set. 
 



Proof: If A and B are finite sets then A B A B A B∪ = + − ∩ . So, A B∪  is a countable 
set. 
Suppose A and B are countably infinite sets. Let 1 2 3{ , , ,....}A a a a=  and 1 2 3{ , , ,....}B b b b= . 
Then 1 1 2 2 3 3{ , , , , , ,......}A B a b a b a b∪ = . If i ja b=  for some i and j, then such elements are 
written just once, which does not change the cardinality when there are infinitely many 
elements (the worst case is i ja b=  for all i and j, and in that case 

1 2 3{ , , ,....}A B a a a∪ = which is a countable set). Actually, being able to write A B∪  as 
1 1 2 2 3 3{ , , , , , ,......}A B a b a b a b∪ =  shows that it is a countably infinite set.  

But it is better to say that there is a 1-1 and onto function from  to A B∪ . Let 
1 2 3{ , , ,...}A B c c c∪ =  be our set after writing the same elements once. Then, ( ) nf n c=  is a 

1-1 and onto function.  Hence, A B∪ = .  
 
Definition 6.16: The set of irrational numbers is the set of real numbers which are not 
rational numbers. 
 
Theorem 6.17: Both  and the set of irrational numbers are uncountable sets. 
 
Proof: We start by showing that  is an uncountable set. 
It is better to deal with a smaller (relatively!) set; let’s take the interval ( )0,1 .  
Any number in this interval can be expressed as a unique, never-ending decimal. 
If there were countably many numbers in this interval, we could list them in a table: 
 

1st number: 1 1 1 1
1 2 3 40,    .....x x x x  

2nd number: 2 2 2 2
1 2 3 40,    .....x x x x  

3rd number: 3 3 3 3
1 2 3 40,    .....x x x x  

4th number: 4 4 4 4
1 2 3 40,    .....x x x x  

….  
Here, each j

ix  denotes a digit between 0 and 9. 
Now, let 1 2 3 40,    .....x x x x x=  where  
 

• 1 1
1 1 1 10   if   1 and 1  if   0x x x x= ≥ = =  

• 2 2
2 2 2 20   if   1 and 1  if   0x x x x= ≥ = =  

• 3 3
3 3 3 30   if   1 and 1  if   0x x x x= ≥ = =  

• …….. 
 
This element x is different from the first number in our list since they differ in the first 
decimal digit (first entry), x is different form the second number in the list since they 
differ in the second decimal digit (second entry), etc. Thus, x can not be in the list since it 
differs with the nth element in the list in the nth entry. Hence, x is a number in the interval 
( )0,1  but it is not in the list. That is, we are unable to list all numbers in ( )0,1 ; ( )0,1  is an 
uncountable set. 



 
Since  is the union of lots of such uncountable intervals, we can conclude that  is 
uncountable. 
 
We know that  is the union of the set of rational numbers and the set of irrational 
numbers.  If the set of irrational numbers were countable, then since the union of two 
countable sets is countable (Theorem 6.15),  would be countable. But we just showed 
that it is not; hence, the set of irrational numbers is an uncountable set.  
 
Exercises 

1. Let T be the set of natural numbers which are multiples of 3. Show that T is a 
countably infinite set. 

2. Show that the set of prime numbers is a countably infinite set. 
3. Show that the set of whole numbers is a countably infinite set. 
4. Show that if a is a rational number and b is an irrational number then a b+  is an 

irrational number. 
5. Is the set of irrational numbers closed under addition? 
6. Is the set of irrational numbers closed under multiplication? 
7. Is the product of an irrational number and a rational number an irrational number? 

What if the rational number is nonzero? 
8. Another idea for “counting” the positive rational numbers is given as follows. 

First, create an infinite table (or matrix) as shown below. 
1/1 1/ 2 1/ 3 1/ 4 1/ 5 1/ 6 1/ 7
2 /1 2 / 2 2 / 3 2 / 4 2 / 5 2 / 6 2 / 7
3/1 3/ 2 3/ 3 3/ 4 3/ 5 3/ 6 3/ 7
4 /1 4 / 2 4 / 3 4 / 4 4 / 5 4 / 6 4 / 7
5 /1 5 / 2 5 / 3 5 / 4 5 / 5 5 / 6 5 / 7
6 /1 6 / 2 6 / 3 6 / 4 6 / 5 6 / 6 6 / 7
7 /1 7 / 2 7 / 3 7 / 4 7 / 5 7 / 6 7 / 7

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

Notice that the rational numbers in this table are not in reduced form. However, 
every positive rational number is easy to find in this table. If ,m n∈  then /m n  
can be found in row m and column n. Now, move through this matrix starting in 
the upper left hand corner, following the natural numbers in the matrix below.  



1 3 6 10 15 21 28
2 5 9 14 20 27
4 8 13 19 26
7 12 18 25
11 17 24
16 23
22 .etc

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

What natural number will correspond to 11/13 ? Can you give the natural number 
that corresponds to /m n  when ,m n∈ ? Explain how to use the ideas above to 
show that the set of positive rational numbers is countably infinite. 

 
 
Solutions: 
 
1. Let T be the set of natural numbers which are multiples of 3. So, { }  3T n n= ∈ .  

We need to find a 1-1 function from  to T .  
Define ( ) 3f n n= . Then the domain of this function is , and the range is T . Is 
it one-to-one? 

( ) ( )f m f n=  implies 3 3m n= , which means m n= . So, yes, it is one-to-one. 
Hence, T  is countably infinite and T = . 

 
 
2. Let { }  and  is  prime P p p p= ∈ . We know that there is no largest prime 

number, i.e. P has infinitely many elements. So, by Theorem 6.6, P≤ . 
 
Let us define ( )f p p=  on P. Then f is a 1-1 function whose domain is P and 
range is P. We know that P N⊂ . Hence, f is a function whose domain is P and 
whose range is contained in ; by the definition 6.5, P ≤ . 

Therefore, we can conclude that P= ; that is, P is a countably infinite set. 
 
 

3. 0, {0,1,2,3,4,...}+ = . Let us define a function on 0,+  such that ( ) 1f n n= + . 
Then f is clearly 1-1. The domain of f is 0,+ , the range of f is . Hence, 0,+  is 

a countably infinite set; 0,+= . 
 
 
4. Let a be a rational number and b be an irrational number.  



Suppose a b+  is a rational number. We have; a− ∈  and  ( ) ( )b a b a= + + − . 
Since  is closed under addition, this implies that b is a rational number, which 
is a contradiction to our hypotheses. 
Hence,  a b+  is an irrational number. 

 
 

5. We know that 2  and 1 2−  are irrational numbers. However, ( )2 1 2 1+ − =  

and 1 is a rational number. Hence, the set of irrational numbers is not closed 
under addition. 

 
 
6. Notice that 2 2 2⋅ = , where 2  is an irrational and 2 is a rational number. 

Hence, the set of irrational numbers is not closed under multiplication.  
 
 
7. The product of a rational number and an irrational number may be a rational or an 

irrational number; 0 2 0⋅ = ∈  but 1 2 2⋅ = . 
 
Let a be a non-zero rational number and b be an irrational number. Since a is not 
zero, there exists 1a− ∈  such that 1 1a a− ⋅ = . 

Suppose ma b
n

⋅ = , where , ,   0m n n∈ ≠ . Then, 

1 1 1 1( ) ;  i.e.  ( )m ma a b a a a b a
n n

− − − −⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ . Hence, 1 mb a
n

−= ⋅ . Since 

1a− ∈  and  is closed under multiplication, we must conclude that b is a 
rational number which is a contradiction to the hypotheses. 
Thus, product of a non-zero rational number and an irrational number is an 
irrational number. 
 
 
 

8.  
1 3 6 10 15 21 28
2 5 9 14 20 27
4 8 13 19 26
7 12 18 25
11 17 24
16 23
22 .etc

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 



It will be easier to find the natural number corresponding to 11/13 if we derive a 
formula first. 
Notice that ; 

1;   1 2 3,   1 2 3 6,   1 2 3 4 10,   1 2 3 4 5 15,...m = + = + + = + + + = + + + + =  
2;   2 3 5,   2 3 4 9,  2 3 4 5 14,   2 3 4 5 6 20,...m = + = + + = + + + = + + + + = , and so 

on.. So, there is a pattern in the way the entries increase. 

By remembering that ( 1)1 2 3 ...
2

k kk +
+ + + + =  and doing some calculations , we 

can derive a formula for finding the entry in the mth row and nth column; ,m nA . 
 

,
( 1)( ) ( 1)

2m n
m n m nA m+ − +

= − − . 

 
The natural number corresponding to 11/13 is in the 11th row and 13th column.  
Hence, 

 11,13
23.24 10 266

2
A = − = . 

By deriving a formula to the entry ,m nA , we found a 1-1 function whose domain 

is  and range is ; specifically, ( 1)( ) ( 1)
2

m m n m nf n
n

+ − +⎛ ⎞ = − −⎜ ⎟
⎝ ⎠

. Hence, 

 is a countably infinite set. 


