1. The Natural Numbers

Definition 1.1: The set of natural numbers, \mathbb{N}, is given by

$$
\mathbb{N}=\{1,2,3,4, \ldots\}
$$

\mathbb{N} is a subset of the real numbers, and we visualize \mathbb{N} as a set of infinitely many isolated points which are equally spaced along the real number line.

A list of basic facts associated with \mathbb{N} are given below:
$\mathbf{N} 1 . \mathbb{N}$ is closed under addition; i.e. the sum of two natural numbers is always a natural number.
$\mathbf{N} 2 . \mathbb{N}$ is the smallest subset of real numbers which contains 1 and is closed under addition.
N3. \mathbb{N} is closed under multiplication; i.e. the product of any two natural numbers is a natural number.
N4. \mathbb{N} is not closed under subtraction or division since $13-23$ is not a natural number and $3 \div 7$ is not a natural number.
N5. \mathbb{N} does not contain the additive identity 0 .
N6. \mathbb{N} contains the multiplicative identity 1.
N7. \mathbb{N} contains a smallest element; namely 1.
N8. If $r \in \mathbb{R}$ then there is an element $n \in \mathbb{N}$ such that $r<n$.
Definition 1.2: Let $m, n \in \mathbb{N}$. We say that \boldsymbol{m} is a multiple of \boldsymbol{n} if and only if there is a natural number k so that $m=k n$.

Definition 1.3: We say that a subset S of \mathbb{R} is closed under addition if and only if $a+b \in S$ whenever $a, b \in S . S$ is closed under multiplication if and only if $a b \in S$ whenever $a, b \in S . S$ is closed under division if and only if $a / b \in S$ whenever $a, b \in S$ and $b \neq 0$. S is closed under subtraction if and only if $a-b \in S$ whenever $a, b \in S$.

Example 1.4: Let $S=\{3 n \mid n \in \mathbb{N}\}$, the set of positive multiples of 3. Notice that

$$
S=\{3,6,9,12, \ldots\}
$$

Show that S is closed under both addition and multiplication.
Solution: We start by picking two numbers $3 m$ and $3 n$ in S. Then

$$
3 m+3 n=3(m+n) \text { from the distributive property. }
$$

Therefore, $3 m+3 n$ is a multiple of 3 , since $m+n \in \mathbb{N}$ from $\mathbf{N} 1$. Also, $(3 m)(3 n)=3(3 m n)$ from the associative and commutative properties.
Therefore, $(3 m)(3 n)$ is a multiple of 3 , since $3 m n \in \mathbb{N}$ from $\mathbf{N} 3$. So, S is closed under both addition and multiplication.

We assume the ordering of the natural numbers is well understood. We know that $1<2<3<4<\ldots$
Of course, there are many natural numbers which are much more complicated than the ones shown above, and it is not always a trivial matter to see (on first inspection) how two natural numbers are ordered.

Example 1.5: Which of the following is true,

$$
341789312633>67325698994 \text { or } 341789312633<67325698994 \text { ? }
$$

Solution: If you check carefully, you will see that the natural number 341789312633 has more digits than the natural number 67325698994 . Consequently,

$$
341789312633>67325698994
$$

If two natural numbers have the same number of digits, then the digits can be used to determine which number is larger.

N9. A natural number x is larger than a natural number y if x has more digits than y. If x and y have the same number of digits, then the size is determined by comparing the digits from left to right.

Example 1.6: Which of the natural numbers 345278936 and 345728936 is larger?
Solution: Each of these natural numbers have 9 digits. Comparing the first four digits from left to right we see $3=3,4=4,5=5$ and $2<7$. Consequently,

$$
345278936 \text { < } 345728936
$$

The digits in a natural number have special meaning. For example,

$$
\begin{gathered}
354=3 \times 100+5 \times 10+4 \times 1 \\
2063=2 \times 1000+0 \times 100+6 \times 10+3 \times 1
\end{gathered}
$$

This gives rise to the terms ones-digit or ones-place, tens-digit or tens-place, hundredsdigit or hundreds-place, thousands-digit or thousands-place, etc.

There are a number of important subsets of \mathbb{N}.
Definition 1.7: The even natural numbers are the natural numbers which are multiples of 2 . The odd natural numbers are the natural numbers which are not multiples of 2 .

We can see that the set of even natural numbers is given by $\{2,4,6,8,10,12, \ldots\}$ and that the set of even natural numbers can also be described as $\{2 n \mid n \in \mathbb{N}\}$. You should be able to show that a natural number is even if its ones digit is either $0,2,4,6$ or 8 .

Similarly, we can see that the set of odd natural numbers is given by $\{1,3,5,7,9,11, \ldots\}$ and the set of odd natural numbers can also be described as $\{2 n+1 \mid n \in \mathbb{N}$ or $n=0\}$. Notice that from Definition 5, every natural number is either an even number or an odd number.

Example 1.8: The even natural numbers are closed under multiplication.
Solution: We start by choosing two arbitrary even natural numbers. We can write these as $2 m$ and $2 n$ where $m, n \in \mathbb{N}$. Then

$$
\begin{aligned}
(2 m)(2 n) & =4 m n \\
& =2(2 m n)
\end{aligned}
$$

by the associative and commutative properties. From N3, $2 m n$ is a natural number. So, the product $(2 m)(2 n)$ is an even number. Therefore, the even natural numbers are closed under multiplication.

Example 1.9: The even natural numbers are closed under addition.
Solution: We start by choosing two arbitrary even natural numbers. We can write these as $2 m$ and $2 n$ where m and n are natural numbers. Then

$$
2 m+2 n=2(m+n)
$$

from the distributive property. $\mathbf{N} \mathbf{1}$ implies $m+n$ is an integer. So, the sum $2 m+2 n$ is an even natural number. Therefore, the even natural numbers are closed under addition.

Exercises

1. Which number is larger, 3278456091 or 452901362 ?
2. Which number is larger, 42567893456 or 42567983456 ?
3. Determine whether the odd natural numbers are closed under addition.
4. Determine whether the even natural numbers are closed under subtraction.
5. Let $S=\left\{2^{n} \mid n=0\right.$ or $\left.n \in \mathbb{N}\right\}$. Show that S is closed under multiplication.

Determine whether this set is closed under addition.
6. Show that the odd natural numbers are closed under multiplication.
7. Use properties N8 and O1-O4 to show that if $a \in \mathbb{R}$ with $a>0$ then there is an element $m \in \mathbb{N}$ so that $0<\frac{1}{m}<a$.

We gave a simple criteria above for checking whether a natural number is a multiple of 2. Namely, the ones digit is one of $0,2,4,6$ or 8 . It is also possible to give criteria to check whether a natural number is a multiple of $3,4,5,6,7,8,9$ or 10 . We state the result for multiples of 3 as a theorem, and place the other results in the exercises.

Theorem 1.10: A number $n \in \mathbb{N}$ is a multiple of 3 if and only if the sum of its digits is a multiple of 3.

Proof: Suppose the number n has the form

$$
n=a_{k} a_{k-1} \ldots a_{1} a_{0}
$$

where the numbers $a_{k}, a_{k-1}, \ldots a_{1}, a_{0}$ are the digits of n. Then

$$
\begin{aligned}
n & =a_{k}\left(10^{k}\right)+a_{k-1}\left(10^{k-1}\right)+\cdots+a_{1}(10)+a_{0} \\
& =a_{k}(\underbrace{99 \ldots 9}_{k \text { times }}+1)+a_{k-1}(\underbrace{99 \ldots 9}_{k-1 \text { times }}+1)+\cdots+a_{1}(9+1)+a_{0} \\
& =a_{k}(\underbrace{99 \ldots 9}_{k \text { times }})+a_{k-1}(\underbrace{99 \ldots 9}_{k-1 \text { times }})+\cdots+a_{1}(9)+\left(a_{k}+a_{k-1}+\cdots+a_{1}+a_{0}\right)
\end{aligned}
$$

Since $a_{k}(\underbrace{99 \ldots 9}_{k \text { times }})+a_{k-1}(\underbrace{99 \ldots 9}_{k-1 \text { times }})+\cdots+a_{1}(9)$ is a multiple of 3 , we find that n is a multiple of 3 if and only if $\left(a_{k}+a_{k-1}+\cdots+a_{1}+a_{0}\right)$ is a multiple of 3 .

Example 1.11: The proof technique above might not seem transparent unless we demonstrate it with a specific example. Notice that

$$
\begin{aligned}
24654 & =2(10000)+4(1000)+6(100)+5(10)+4 \\
& =2(9999+1)+4(999+1)+6(99+1)+5(9+1)+4 \\
& =2(9999)+4(999)+6(99)+5(9)+(2+4+6+5+4)
\end{aligned}
$$

The number $2(9999)+4(999)+6(99)+5(9)$ is a multiple of 3 . So, 24654 is a multiple of 3 if and only if $2+4+6+5+4$ is a multiple of 3 . This sum is 21 , which is a multiple of 3 . Therefore, 24654 is a multiple of 3.

Example 1.12: The number 183 is a multiple of 3 , since the sum of its digits is

$$
1+8+3=12
$$

which is a multiple of 3 . The number 9763218 is a multiple of 3 , since the sum of its digits is

$$
9+7+6+3+2+1+8=36
$$

which is a multiple of 3 . The number 5167283 is not a multiple of 3 since the sum of its digits is 32 , which is not a multiple of 3 .

Exercises

1. Show that the number 111234546327 is a multiple of 3 .
2. Show that the number 234567890 is not a multiple of 3 .
3. Let $a, b, c \in \mathbb{N}$ with $a=b+c$, and suppose b is a multiple of 3 . Show a is a multiple of 3 if and only if c is a multiple of 3 .
4. This is a generalization of the exercise above. Let $a, b, c, d \in \mathbb{N}$ with $a=b+c$, and suppose b a multiple of d. Show a is a multiple of d if and only if c is a multiple of d.
5. Show that a natural number is a multiple of 9 if and only if its digits sum to a multiple of 9 .
6. Show that the number 4545454563 is a multiple of 9 .
7. A natural number is a multiple of 4 if and only if the number formed by the last two digits is a multiple of 4. (Hint: 100, 1000, 10000, etc. are all multiples of 4.)
8. Which of the numbers 234516,324414 and 2314856 are multiples of 4 ?
9. Show that a natural number is a multiple of 5 if and only if its ones digit is 0 or 5 .
10. Show that a natural number is a multiple of 6 if and only if it is ones digit is 0,2 , 4,6 or 8 , and the sum of its digits is a multiple of 3 .
11. Explain why the exercise above is equivalent to saying that a natural number is a multiple of 6 if and only if it is a multiple of both 2 and 3.
12. Show that a natural number is a multiple of 8 if and only if the number formed by the last three digits is a multiple of 8 . (Hint: 1000, 10000, 100000, etc. are multiples of 8.)
13. Which of the numbers 234516, 324414 and 2314856 are multiples of 8 ?
14. Show that a natural number is a multiple of 10 if and only if the ones digit is 0 .
15. Show that a natural number, written as $a_{n} a_{n-1} \cdots a_{2} a_{1} a_{0}$ is a multiple of 7 if and only if $\underbrace{22 \cdots 23}_{n-1 \text { times }} a_{n}+\underbrace{22 \cdots 2}_{n-2 \text { times }} 3 a_{n-1}+\cdots+23 a_{2}+3 a_{1}+a_{0}$ is a multiple of 7 .
16. Let $m, n \in \mathbb{N}$. We say that \boldsymbol{m} is divisible by \boldsymbol{n} if and only if m is a multiple of n. We say that \boldsymbol{n} divides \boldsymbol{m} if and only if m is divisible by n. Restate the exercises above using this new language.
