Problem 1.

- (a) Given the points: A(1, -2, 1), B(3, 2, 2), C(-2, 1, -5).
 - (i) Prove that A, B and C are the vertices of a right triangle.
 - (*ii*) Determine the length of the hypotenuse of the triangle.
 - (*iii*) Find an equation for the sphere that has the hypotenuse as a diameter.
- (b) Given the vectors: $\mathbf{a} = 2\mathbf{i} \mathbf{k}$, $\mathbf{b} = 2\mathbf{i} + 3\mathbf{j} \mathbf{k}$, $\mathbf{c} = -\mathbf{i} + 3\mathbf{j} 2\mathbf{k}$.
 - (i) Calculate: $3(2\mathbf{a} \mathbf{b} + \mathbf{c})$
 - (*ii*) Find: proj_bc.
 - (*iii*) Determine a unit vector in the direction of $\mathbf{b} \times \mathbf{a}$.
 - (iv) Determine the volume of the parallelepiped that has $\mathbf{a}, \mathbf{b}, \text{and } \mathbf{c}$ as sides.

Problem 2. Given the plane P: 3x - y + 4z = 3, the line $L: \frac{x-1}{-2} = \frac{y+4}{2} = \frac{z+3}{2}$, and the point A(-3,0,5).

- (a) Determine whether P and L are parallel.
- (b) Determine whether A lies on L. If it doesn't, find the distance from A to L.
- (c) Determine the parametric equations for the line M that passes through A and is perpendicular to P.
- (d) Find the point of intersection of M and P.

Problem 3. Given the planes P_1 : x + 4y - z = 10, P_2 : 3x - y + 2z = 4, and the point A(-2, 1, 0).

- (a) Determine an equation for the plane that contains A and is parallel to P_1 .
- (b) Determine whether A lies on P_2 . If it doesn't, find the distance from A to P_2 .
- (c) Determine whether P_1 and P_2 are parallel. If not, find symmetric equations for the line of intersection of P_1 and P_2 .
- (d) Determine the cosine of the angle between P_1 and P_2 .

Problem 4.

- (a) Let $\mathbf{f}(t) = (2t+1)\mathbf{i} (\cos \pi t)\mathbf{j}$ and $\mathbf{g}(t) = t^2\mathbf{i} + 3\mathbf{j}$.
 - (i) Find $\lim_{t \to 3} \mathbf{f}(t)$.

(*ii*) Calculate $[\mathbf{f}(t) \cdot \mathbf{g}(t)]'$.

(b) The position of an object at time t is given by the vector function

$$\mathbf{r}(t) = \left(e^{-t}\sin t\right)\,\mathbf{i} + \left(e^{-t}\cos t\right)\,\mathbf{j} + 3t\,\mathbf{k}$$

Determine:

- (i) The velocity vector $\mathbf{v}(t)$.
- (ii) The speed of the object at time t.
- (*iii*) The acceleration vector $\mathbf{a}(t)$.
- $(iv) \lim_{t \to \infty} \mathbf{v}(t)$

Problem 5.

(a) A curve C in the plane is defined by the parametric equations:

$$x(t) = \frac{1}{2}t^2 + 1,$$
 $y(t) = \frac{1}{3}t^3 - 1.$

- (i) Find the length of C from t = 0 to t = 3.
- (*ii*) Find the curvature of C at the point where t = 1.
- (b) The vector function $\mathbf{r}(t) = 2t \mathbf{i} + t^2 \mathbf{j} + \frac{1}{3}t^3 \mathbf{k}$ determines a curve C in space.
 - (i) Find scalar parametric equations for the line tangent to C at the point where t = 3.
 - (*ii*) Find the length of C from t = 0 to t = 3.
 - (*iii*) Determine the unit tangent vector \mathbf{T} and the principal normal vector \mathbf{N} at t = 1.
 - (iv) Find an equation for the osculating plane at t = 1.

Problem 6. The vector function $\mathbf{r}(t) = (\cos t + t \sin t)\mathbf{i} + (\sin t - t \cos t)\mathbf{j} + \frac{1}{2}\sqrt{3}t^2\mathbf{k}$ determines a curve C in space.

- (a) Find the unit tangent vector $\mathbf{T}(t)$ and the principal normal vector $\mathbf{N}(t)$.
- (b) Determine the curvature κ of C.
- (c) Determine the tangential and normal components of acceleration; express the acceleration vector $\mathbf{a}(t)$ in terms of \mathbf{T} and \mathbf{N} .