Section 1.5: Inverse Functions

➢ Inverses of One-to-One Functions

Inverses of One-to-One Functions

Definition of a One-to-One Function:

A function \(f \) is said to be one-to-one provided that the following holds for all \(x_1 \) and \(x_2 \) in the domain of \(f \):

\[\text{If } f(x_1) = f(x_2), \text{ then } x_1 = x_2. \]

Example:

Let \(f(x) = 3x + 7 \). Use the definition to show that \(f \) is one-to-one.

Solution:

To show that \(f \) is one-to-one, we begin by assuming that \(f(x_1) = f(x_2) \). We must then show that \(x_1 = x_2 \).

Assume that \(f(x_1) = f(x_2) \). Then:

\[
\begin{align*}
3x_1 + 7 &= 3x_2 + 7 \\
3x_1 + 7 - 7 &= 3x_2 + 7 - 7 \\
3x_1 &= 3x_2 \\
\frac{3x_1}{3} &= \frac{3x_2}{3} \\
x_1 &= x_2
\end{align*}
\]

This shows, by definition, that \(f \) is one-to-one.
Example:

Let \(f(x) = x^2 \). Show that \(f \) is not one-to-one.

Solution:

To show that \(f \) is not one-to-one, we need to give a specific example to show that the condition \(f(x_1) = f(x_2) \) fails to imply that \(x_1 = x_2 \).

Using \(x_1 = -1 \) and \(x_2 = 1 \), we have:

\[
f(-1) = (-1)^2 = 1 \quad \text{and} \quad f(1) = 1^2 = 1.
\]

Thus, \(f(-1) = f(1) \), but \(-1 \neq 1\). This shows that \(f \) is not one-to-one.

Horizontal Line Test:

A function is one-to-one if no horizontal line intersects its graph more than once.

To see why the horizontal line test is valid, the figure below shows the graph of the function \(f(x) = x^2 \). From the example above, we know that \(f \) is not one-to-one. Note that the horizontal line shown on the graph intersects the graph in two points: \((-1, 1)\) and \((1, 1)\). This shows that \(f(-1) = f(1) \) even though \(-1 \neq 1\).

![Graph of f(x) = x^2](image)

Example:

Determine whether the function \(f(x) = x^2 - 2 \) is one-to-one.
Solution:
Begin with the graph of \(g(x) = x^2 \) shown below.

To graph the function \(f(x) = x^2 - 2 \), shift the graph of \(g \) 2 units downward.

The graph of the given function is shown below.
Now use the Horizontal Line Test

\[f(x) = x^2 - 2 \]

Since we can find a horizontal line that intersects the graph more than once, by the Horizontal Line Test, \(f \) is not one-to-one.

The Inverse of a One-to-One Function:

If \(f \) is a one-to-one function with domain \(A \) and range \(B \), then there is a one-to-one function \(g \), the inverse of \(f \), with domain \(B \) and range \(A \) such that

\[f(g(x)) = x \text{ for each } x \text{ in } B \]

and

\[g(f(x)) = x \text{ for each } x \text{ in } A. \]

The functions \(f \) and \(g \) are called inverses of each other.

Example:

Verify that the functions \(f(x) = 2x - 5 \) and \(g(x) = \frac{x+5}{2} \) are inverse functions.

Solution:

To verify that the given functions are inverses of each other, we must show that

\[f(g(x)) = x \text{ and } g(f(x)) = x. \]
A Technique for Finding the Inverse of a One-to-One Function:

If f is a one-to-one function, then its inverse function is denoted by f^{-1}.

Now, suppose that f is a one-to-one function defined by $y = f(x)$. If $f(a) = b$, then $f^{-1}(b) = a$; that is, f^{-1} reverses the correspondence of f.

To find f^{-1}, we can interchange the variables x and y in the equation $y = f(x)$. The equation that results, $x = f(y)$, defines the inverse function. If we can solve this equation for y, we can then express the inverse as the equation $y = f^{-1}(x)$.

Example:

The function $f(x) = 2x + 3$ is one-to-one. Find its inverse function.
Solution:

\[f(x) = 2x + 3 \]

\[y = 2x + 3 \quad \text{Step 1: Write } y = f(x). \]

\[x = 2y + 3 \quad \text{Step 2: Interchange } x \text{ and } y. \]

\[x - 3 = 2y + 3 - 3 \quad \text{Step 3: Solve for } y. \]

\[x - 3 = 2y \]

\[\frac{x - 3}{2} = \frac{2y}{2} \]

\[x - 3 = y \]

\[f^{-1}(x) = \frac{x - 3}{2} \quad \text{Step 4: Write } y = f^{-1}(x). \]

To verify that \(f^{-1}(x) = \frac{x - 3}{2} \) is the inverse of \(f(x) = 2x + 3 \):

\[f(f^{-1}(x)) = f\left(\frac{x - 3}{2}\right) = 2\left(\frac{x - 3}{2}\right) + 3 = x - 3 + 3 = x \]

\[f^{-1}(f(x)) = f^{-1}(2x + 3) = \frac{2x + 3 - 3}{2} = \frac{2x}{2} = x \]

The Graphs of \(f \) and \(f^{-1} \):

If the point \((a, b)\) lies on the graph of a one-to-one function \(f \), then the point \((b, a)\) lies on the graph of its inverse function \(f^{-1} \). These points are mirror images in the line \(y = x \). Thus, to find the graph of \(f^{-1} \), reflect the graph of \(f \) in the line \(y = x \).

Example:

The graph of a one-to-one function \(y = f(x) \) is shown below. Sketch the graph of \(f^{-1} \).
Solution:
The graph of \(f^{-1} \) is found by reflecting the graph of \(f \) in the line \(y = x \).

The graph of the inverse function is shown below.

Additional Example 1:
The graphs of two functions are shown below. State whether or not the graphs are the graphs of one-to-one functions.

(a)
(b)
Solution:
Use the Horizontal Line Test for the graph in part (a).

It is easy to see (from the 4 example lines shown) that no horizontal line intersects the graph more than once.

The first graph is the graph of a one-to-one function.

Use the Horizontal Line Test for the graph in part (b).

We can find a horizontal line that intersects the graph more than once.

The second graph is not the graph of a one-to-one function.
CHAPTER 1 A Review of Functions

Additional Example 2:
The graph of a one-to-one function \(y = f(x) \) is shown below. (a) Give the domain and range of \(f \). (b) Sketch the graph of the inverse function \(f^{-1} \). (c) Give the domain and range of \(f^{-1} \).

Solution:
Part (a):

Find the domain of \(f \) by inspecting its graph.

The domain of \(f \) is \([0, 1]\).
Find the range of f by inspecting its graph.

The range of f is $\left[\frac{1}{2}, 1\right]$.

Part (b):

The graph of f^{-1} can be sketched by reflecting the graph of f in the line $y = x$.
The graph of f^{-1} is shown below.

\[y = f^{-1}(x) \]

Part (c):

Find the domain of f^{-1} by inspecting its graph.

The domain of f^{-1} is $\left(\frac{1}{2}, 1\right]$, which is equal to the range of f.
Find the range of f^{-1} by inspecting its graph.

The range of f^{-1} is $[0, 1]$, which is equal to the domain of f.

Additional Example 3:

Determine whether or not the function $f(x) = (x - 1)^2$ is one-to-one.

Solution:

Sketch the graph of f by using transformations. Begin with the graph of $g(x) = x^2$ shown below.
To graph the function \(f(x) = (x - 1)^2 \), shift the graph of \(g \) 1 unit to the right.

The graph of \(f \) is shown below.

Now use the Horizontal Line Test.

We can find a horizontal line that intersects the graph of \(f \) more than once.

\(f \) is not a one-to-one function.
Additional Example 4:

The function \(f(x) = 8x + 3 \) is one-to-one. Find the inverse function \(f^{-1} \).

Solution:

Step 1: Write \(y = f(x) \).

\[
y = 8x + 3
\]

Step 2: Interchange \(x \) and \(y \).

\[
x = 8y + 3
\]

Step 3: Solve the equation \(x = 8y + 3 \) for \(y \).

\[
x = 8y + 3
\]
\[
x - 3 = 8y + 3 - 3
\]
\[
x - 3 = 8y
\]
\[
\frac{x - 3}{8} = \frac{8y}{8}
\]
\[
\frac{x - 3}{8} = y
\]

Step 4: Write \(y = f^{-1}(x) \).

\[
\frac{x - 3}{8} = f^{-1}(x)
\]

The inverse function is \(f^{-1}(x) = \frac{x - 3}{8} \).

Additional Example 5:

Determine whether or not the functions \(f(x) = 5x^3 \) and \(g(x) = \sqrt[3]{\frac{x}{5}} \) are inverses of each other.
Solution:
Find \(f \circ g \).

\[
(f \circ g)(x) = f(g(x)) \\
= f\left(\frac{x}{\sqrt[3]{5}}\right) \\
= 5\left(\frac{x}{\sqrt[3]{5}}\right)^3 \\
= 5\left(\frac{x}{5}\right) \\
= x
\]

Find \(g \circ f \).

\[
(g \circ f)(x) = g(f(x)) \\
= g\left(\frac{x^3}{\sqrt{5}}\right) \\
= \frac{\sqrt[3]{5x^3}}{\sqrt{5}} \\
= \frac{3\sqrt[3]{x^3}}{\sqrt{5}} \\
= x
\]

The functions \(f \) and \(g \) are inverses of each other since \(f(g(x)) = x \) and \(g(f(x)) = x \).

Additional Example 6:
Assume that \(f \) and \(g \) are inverse functions. Answer the following.

(a) If \(f(3) = 5 \), find \(g(5) \). (b) If \(g(-3) = -1 \), find \(f(-1) \).
Solution:

Part (a):

Since f and g are inverse functions, we have $g(f(x)) = x$.

$$g(f(3)) = 3$$

Now substitute the given information that $f(3) = 5$.

$$g(5) = 3$$

Part (b):

Since f and g are inverse functions, we have $f(g(x)) = x$.

$$f(g(-3)) = -3$$

Now substitute the given information that $g(-3) = -1$.

$$f(-1) = -3$$
Determine whether each of the following graphs represents a one-to-one function. Explain your answer.

1.
 ![Graph 1](image1.png)

2.
 ![Graph 2](image2.png)

3.
 ![Graph 3](image3.png)

4.
 ![Graph 4](image4.png)

5.
 ![Graph 5](image5.png)

6.
 ![Graph 6](image6.png)

For each of the following functions, sketch a graph and then determine whether the function is one-to-one.

7. \(f(x) = 2x - 3 \)

8. \(g(x) = x^2 + 5 \)

9. \(h(x) = (x - 2)^3 \)

10. \(f(x) = x^3 - 2 \)

11. \(g(x) = |x| + 4 \)

12. \(h(x) = \frac{1}{x} - 3 \)

13. \(f(x) = -(x - 2)^2 + 1 \)

14. \(g(x) = |x - 6| \)

Answer the following.

15. If a function \(f \) is one-to-one, then the inverse function, \(f^{-1} \), can be graphed by either of the following methods:
 (a) Interchange the ____ and ____ values.
 (b) Reflect the graph of \(f \) over the line \(y = ____. \)

16. The domain of \(f \) is equal to the __________ of \(f^{-1} \), and the range of \(f \) is equal to the __________ of \(f^{-1} \).

A table of values for a one-to-one function \(y = f(x) \) is given. Complete the table for \(y = f^{-1}(x) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(x)</th>
<th>(f^{-1}(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(-4)</td>
<td>-4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>(7)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(-4)</td>
<td>(5)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(0)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(x)</th>
<th>(f^{-1}(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(9)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(-3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-8)</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercise Set 1.5: Inverse Functions

For each of the following graphs:
(a) State the domain and range of \(f \).
(b) Sketch \(f^{-1} \).
(c) State the domain and range of \(f^{-1} \).

19.

20.

21.

22.

Answer the following. Assume that \(f \) is a one-to-one function.

23. If \(f(4) = 5 \), find \(f^{-1}(5) \).
24. If \(f(6) = -2 \), find \(f^{-1}(-2) \).
25. If \(f^{-1}(-3) = 7 \), find \(f(7) \).
26. If \(f^{-1}(6) = -8 \), find \(f(-8) \).
27. If \(f(3) = 9 \) and \(f(9) = 5 \), find \(f^{-1}(9) \).
28. If \(f(5) = -4 \) and \(f(2) = 5 \), find \(f^{-1}(5) \).
29. If \(f(-4) = 2 \), find \(f\left(f^{-1}(2)\right) \).
30. If \(f^{-1}(-5) = 3 \), find \(f^{-1}\left(f(3)\right) \).

Answer the following. Assume that \(f \) and \(g \) are defined for all real numbers.

31. If \(f \) and \(g \) are inverse functions, \(f(-2)=3 \) and \(f(4) = -2 \), find \(g(-2) \).
32. If \(f \) and \(g \) are inverse functions, \(f(7)=10 \) and \(f(10) = -1 \), find \(g(10) \).
33. If \(f \) and \(g \) are inverse functions, \(f(5)=8 \) and \(f(9) = 3 \), find \(g\left(f(3)\right) \).
34. If \(f \) and \(g \) are inverse functions, \(f(-1)=6 \) and \(f(7) = 8 \), find \(f\left(g(6)\right) \).

For each of the following functions, write an equation for the inverse function \(y = f^{-1}(x) \).

35. \(f(x) = 5x - 3 \)
36. \(f(x) = -4x + 7 \)
37. \(f(x) = \frac{3 - 2x}{8} \)
38. \(f(x) = \frac{6x - 5}{4} \)
Exercise Set 1.5: Inverse Functions

39. \(f(x) = x^2 + 1 \), where \(x \geq 0 \)

40. \(f(x) = 5 - x^2 \), where \(x \geq 0 \)

41. \(f(x) = 4x^3 - 7 \)

42. \(f(x) = 2x^3 + 1 \)

43. \(f(x) = \frac{3}{x + 2} \)

44. \(f(x) = \frac{5}{7 - x} \)

45. \(f(x) = \frac{2x + 3}{x - 4} \)

46. \(f(x) = \frac{3 - 8x}{x + 5} \)

47. \(f(x) = \sqrt{7 - 2x} \)

48. \(f(x) = 2 + \sqrt{6x + 5} \)

Use the Property of Inverse Functions to determine whether each of the following pairs of functions are inverses of each other. Explain your answer.

49. \(f(x) = 4x - 1 \); \(g(x) = \frac{1}{4}x + 1 \)

50. \(f(x) = 2 + 3x \); \(g(x) = \frac{x - 2}{3} \)

51. \(f(x) = \frac{4 - x}{5} \); \(g(x) = 4 - 5x \)

52. \(f(x) = 2x + 5 \); \(g(x) = \frac{1}{2x + 5} \)

53. \(f(x) = x^3 - 2 \); \(g(x) = \sqrt[3]{x + 2} \)

54. \(f(x) = 2\sqrt{x} - 7 \); \(g(x) = (x + 7)^\frac{1}{2} \)

55. \(f(x) = \frac{5}{x} \); \(g(x) = \frac{5}{x} \)

56. \(f(x) = x^2 + 9 \), where \(x \geq 0 \);
\[g(x) = \sqrt{x - 9} \]

57. If \(f(x) \) is a function that represents the amount of revenue (in dollars) by selling \(x \) tickets, then what does \(f^{-1}(500) \) represent?

58. If \(f(x) \) is a function that represents the area of a circle with radius \(x \), then what does \(f^{-1}(80) \) represent?

A function is said to be one-to-one provided that the following holds for all \(x_1 \) and \(x_2 \) in the domain of \(f \):

If \(f(x_1) = f(x_2) \), then \(x_1 = x_2 \).

Use the above definition to determine whether or not the following functions are one-to-one. If \(f \) is not one-to-one, then give a specific example showing that the condition \(f(x_1) = f(x_2) \) fails to imply that \(x_1 = x_2 \).

59. \(f(x) = 5x - 3 \)

60. \(f(x) = x^3 + 5 \)

61. \(f(x) = \sqrt[3]{x} - 4 \)

62. \(f(x) = |x| - 4 \)

63. \(f(x) = |x - 4| \)

64. \(f(x) = \frac{1}{x} + 4 \)

65. \(f(x) = x^2 + 3 \)

66. \(f(x) = (x + 3)^2 \)

Answer the following.