Math 1324 Section 5.1 Part 2 Set Operations

The videos corresponding to this worksheet can be found at https://online.math.uh.edu/Math1324/. UH students can also view the videos within the Math 1324 textbook.

Set Complementation

Let U be a universal set and A be a subset of U, then

1. $U^c = \emptyset$ 2. $\emptyset^c = U$ 3. $(A^c)^c = A$ 4. $A \bigcup A^c = U$ 5. $A \bigcap A^c = \emptyset$

Set Operations

Let U be a universal set. If A, B, and C are arbitrary subsets of U, then

- 1. $A \cup B = B \cup A$
- 2. $A \cap B = B \cap A$
- 3. $(A \cup (B \cup C)) = ((A \cup B) \cup C)$
- 4. $(A \cap (B \cap C)) = ((A \cap B) \cap C)$
- 5. $(A \cup (B \cap C)) = (A \cup B) \cap (A \cup C)$
- 6. $(A \cap (B \cup C)) = (A \cap B) \cup (A \cap C)$

De Morgan's Laws

Let A and B be sets. Then

1.
$$(A \cup B)^c = A^c \cap B^c$$

2.
$$(A \cap B)^c = A^c \cup B^c$$

These laws can be extended out to a finite number of sets.

Example: Let U=
$$\{1, 2, 3, 4, a, b, c, d\}$$
,
A= $\{2, 4, a, c, d\}$, B= $\{1, 2, b, c\}$, and
C= $\{2, 4, a, c, d\}$.
Find the given sets.
a. $(A \cap C)$

b. $(B^c \cap A)$

Example: Let U=
$$\{1, 2, 3, 4, a, b, c, d\}$$
,
A= $\{1, 4, a, b, d\}$, B= $\{2, 3, b, c\}$, and
C= $\{3, 4, c, d\}$.
Find the given sets.
a. $(C \bigcup A)$

b. $(C^c \cap B^c)$

Example: Let U= $\{1, 2, 3, 4, a, b, c, d\}$, A= $\{2, 3, 4, a\}$, B= $\{1, 3, a, b, c\}$, and C= $\{1, 2, 4, a, d\}$. Find the given set. $((A \cap B)^c \cup C)$

Example: Let U=
$$\{1, 2, 3, 4, a, b, c, d\}$$
,
A= $\{3, 4, b, c\}$, B= $\{1, 4, a, c\}$, and
C= $\{2, 3, 4, a, c, d\}$.
Find the given set. $((A^c \cup C) \cap B^c)$

Example: Let U denote the set of all children in a given 1st grade class. Let $L=\{x \in U | x \text{ likes} | emon \text{ pie}\}$, $A=\{x \in U | x \text{ likes apple pie}\}$ and $B = \{x \in U | x \text{ likes blueberry pie}\}$.

Describe the given set in words. a. $A \cap L$ The set of children in a given 1st grade class that

b. $((A \cup B) \cap L^c)$

The set of children in a given 1st grade class that

Example: Let U denote the set of all children in a given 1st grade class. Let $L=\{x \in U | x \text{ likes} | emon \text{ pie}\}$, $A=\{x \in U | x \text{ likes apple pie}\}$ and $B = \{x \in U | x \text{ likes blueberry pie}\}$.

Describe the given statement in set notation.

a. The set of children in a given 1st grade class that like apple pie or blueberry pie.

b. The set of children in a given 1st grade class
that do not like lemon pie or blueberry pie, but
do like apple pie.