Math1313
Chapter 6 – Section 6.1
Part I – Set Notation and Terminology
A set is a collection of objects.

An element is an object of a set.

Notation: \(\in \) means "element of"
\(\notin \) means "not an element of"

Set-builder notation:
Let \(B = \{1, 2, 3, 4, 5\} \). The set \(B \) in set-builder notation is \(B = \{x \mid 1 \leq x \leq 5\} \).

Example 1: Let \(A = \{a, b, c, d\} \) and \(B = \{x \mid 1 \leq x \leq 5\} \).

Answer True or False:

\(a \in A \)
\(b \notin B \)
\(4 \notin A \)
\(2 \in A \)
Equal sets are sets that have exactly the same elements.

A is a **subset** of B if every element of A is also in B.

Notation:
- \subseteq means "a subset of"
- $\not\subseteq$ means "not a subset of"

Note: Two sets are equal if and only if each is a subset of the other.

Example 2: Let $C = \{1, 2, 3, 4, 5, 6\}$, $D = \{2, 4, 6\}$ and $E = \{2, 1, 4, 3, 6, 5\}$.

Answer True or False:

- $D \subseteq C$
- $E \subseteq D$
- $E \not\subseteq C$
If \(A \subseteq B \) and \(A \neq B \), then \(A \) is a **proper subset** of \(B \).

In other words: \(A \) is a **proper subset** of \(B \) if the following two conditions hold.

1. \(A \) is a subset of \(B \).
2. There exist at least one element in \(B \) that is not in \(A \).

If \(A \) is a proper subset of \(B \) then we write \(A \subset B \).

Example 3: Let \(G = \{1, 2, 3, 4, 5, 6, 7\} \), \(H = \{3, 5, 6, 7\} \), \(I = \{2, 4, 7, 8\} \), and \(J = \{5, 7\} \).

Answer True or False:

\[
\begin{align*}
H & \subset G \\
I & \not\subset G \\
J & \subset H \\
J & \subset I
\end{align*}
\]
The **empty set** is a set that contains no elements.

Note: \emptyset denotes the empty set. It is a subset of every set.

Example 4: Let $A = \{1, 2, 3\}$. List all subsets of the set A.
The **universal set** is the set of all elements of interest in a particular discussion.

A **Venn diagram** is a visual representation of sets.

Some Venn diagrams can look like:

Given two sets A and B, the **union** of A and B, denoted $A \cup B$, is the set of all elements that belong to either A or B or both.

An example of set union using a Venn diagram looks like:

Given two sets A and B, the **intersection** of A and B, denoted $A \cap B$, is the set of all elements in common with both A and B.

An example of set intersection using a Venn diagram looks like:
If $A \cap B = \emptyset$, then we say the intersection is the **null intersection** and that A and B are **disjoint**.

Let U be a universal set and $A \subseteq U$, then the set of all elements in U that are not in A is the **complement** of A.

An example of set complementation using a Venn diagram looks like: