A matrix is an array of numbers.

The real numbers that make up the array are called the entries or elements of the matrix.

The size or dimension of a matrix is described in terms of the number of rows and columns of the matrix.

For example, if a matrix has 4 rows and 2 columns, then the dimension of that matrix is 4x2.

A row matrix is a matrix of size 1xn, it has one row and n columns. A row matrix is also called a row vector.

A column matrix is a matrix of size nx1, it has n rows and one column. A column matrix is also called a column vector.

A matrix with the same number of rows as columns is called a square matrix.

Example 1: Given the following matrix:

\[
A = \begin{pmatrix}
-9 & 1 & 0 & 6 & 99 \\
4 & -3 & -1 & 0 & 0 \\
8 & 11 & 12 & 4 & 7
\end{pmatrix}
\]

answer the following questions.

a. What is the size of A?

b. Find

\[a_{24}, a_{15}, a_{35}, \text{ and } a_{33}\].

Equality of Matrices

Two matrices are equal if they have the same size and their corresponding entries are equal.
Example 2: Solve the following matrix equation for \(x, y, z, \) and \(w. \)

\[
\begin{pmatrix}
 w+3 & 0 & 8 & -17 \\
 4 & -5z & 19 & -1 \\
 8 & -5 & 6 & -6y+1 \\
\end{pmatrix} =
\begin{pmatrix}
 13 & 0 & 8 & -17 \\
 4 & 25 & 19 & x+4 \\
 8 & -5 & 6 & 30 \\
\end{pmatrix}
\]

Addition and Subtraction of Matrices

If \(A \) and \(B \) are two matrices of the same size,

1. The sum \(A + B \) is the matrix obtained by adding the corresponding entries in the two matrices.

2. The difference \(A - B \) is the matrix obtained by subtracting the corresponding entries in \(B \) from \(A. \)

Laws for Matrix Addition

If \(A, B, \) and \(C \) are matrices of the same size, then

1. \(A + B = B + A \)

2. \((A + B) + C = A + (B + C) \)

The **zero matrix** is one in which all entries are zero. The capital letter \(O \) represents the zero matrix.

The zero matrix has the property: \(A + O = O + A = A \)

Example 3: Let \(A = \begin{pmatrix} 9 & -3 & 1 \\ 0 & 12 & 8 \end{pmatrix} \) and \(B = \begin{pmatrix} -4 & 3 & -9 \\ 5 & 20 & -1 \end{pmatrix} \).

Find \(A - B. \)
Scalar Product

If A is a matrix and c is a real number, then the **scalar product** cA is the matrix obtained by multiplying each entry of A by c.

Example 4: Solve for u, x, y, and z in the matrix equation.

\[
\begin{pmatrix}
-9 + u & -50 \\
1 & -2z + 3 \\
8 & 4 \\
y - 10 & -5
\end{pmatrix}
+ 4
\begin{pmatrix}
8 & 10 \\
7 & 5 \\
-3 & -11 \\
2 & 7x
\end{pmatrix}
= -1
\begin{pmatrix}
u & 10 \\
-29 & z + 3 \\
4 & 40 \\
2 & 7x
\end{pmatrix}
\]

If A is an $m \times n$ matrix with elements A^T, then the **transpose** of A is the $n \times m$ matrix with elements.

Example 5: Refer to the following matrices.

\[
A = \begin{pmatrix}
7 & -8 & -3 \\
11 & 10 & 4 \\
0 & -9 & 7
\end{pmatrix}
\]

\[
B = \begin{pmatrix}
-1 & 5 & 2 \\
4 & 5 & 10 \\
1 & -6 & 7
\end{pmatrix}
\]

\[
C = \begin{pmatrix}
1 & -4 & 8 & 10
\end{pmatrix}
\]

a. Find the transpose of A and C.

b. Compute, if possible, $-2A + 4B$.