Section 6.2: More Systems and Applications

Solving Other Systems

Solving Other Systems

Solving Other Systems

The methods of elimination and substitution can be used to solve systems of linear equations with more than two variables and also systems in which nonlinear equations appear.

Example Problem 1: Solving a 3x3 Linear System by the Elimination Method

 Solve the following system by the elimination method.$$
\begin{aligned}
x+y+z & =4 \\
2 x+3 y+3 z & =11 \\
x-5 y+2 z & =-7
\end{aligned}
$$

Solution:

Eliminate x from the second and third equations.

$$
\begin{array}{cl}
-2 x-2 y-2 z=-8 & \text { First equation times }-2 \\
2 x+3 y+3 z=11 & \text { Second equation } \\
\hline y+z=3 & \\
-x-y-z=-4 & \text { First equation times }-1 \\
\frac{x-5 y+2 z=-7}{-6 y+z=-11} & \text { Third equation }
\end{array}
$$

We obtain a new system that is equivalent to the original system.

$$
\begin{aligned}
x+y+z & =4 \\
y+z & =3 \\
-6 y+z & =-11
\end{aligned}
$$

Eliminate y from the third equation.

$$
\begin{aligned}
& 6 y+6 z=18 \\
& \frac{-6 y+z}{}=-11 \\
& \hline 7 z=7
\end{aligned} \quad \begin{aligned}
& \text { Second equation times } 6 \\
& \text { Third equation }
\end{aligned}
$$

Write the equivalent system

$$
\begin{array}{r}
x+y+z=4 \\
y+z=3 \\
7 z=7
\end{array}
$$

Now multiply the third equation by $\frac{1}{7}$.

$$
\begin{aligned}
x+y+z & =4 \\
y+z & =3 \\
z & =1
\end{aligned}
$$

Substitute $z=1$ into the second equation.

$$
\begin{aligned}
y+1 & =3 \\
y+1-1 & =3-1 \\
y & =2
\end{aligned}
$$

Substitute $z=1$ and $y=2$ into the first equation.

$$
\begin{aligned}
x+2+1 & =4 \\
x+3 & =4 \\
x+3-3 & =4-3 \\
x & =1
\end{aligned}
$$

The solution to the system is $x=1, y=2$, and $z=1$ which can be written as $(1,2,1)$.

Example Problem 2: Solving a System Which Contains a Nonlinear Equation by the Method of Substitution

Solve the following system by the substitution method.

$$
\begin{aligned}
x^{2}-x-y & =3 \\
-x+y & =-3
\end{aligned}
$$

Solution:

Solve the second equation for y.

$$
\begin{gathered}
-x+y=-3 \\
-x+y+x=-3+x \\
y=-3+x
\end{gathered}
$$

Now substitute $-3+x$ for y in the first equation.

$$
\begin{aligned}
& x^{2}-x-y=3 \\
& x^{2}-x-(-3+x)=3 \\
& x^{2}-x+3-x=3 \\
& x^{2}-2 x+3=3 \\
& x^{2}-2 x+3-3=3-3 \\
& x^{2}-2 x=0 \\
& x(x-2)=0 \\
& x=0 \quad \text { or } \quad x=2
\end{aligned}
$$

Substitute $x=0$ into the equation $y=-3+x$.

$$
y=-3+0=-3
$$

Substitute $x=2$ into the equation $y=-3+x$.

$$
y=-3+2=-1
$$

The system has two solutions:

$$
(0,-3) \quad[x=0 \text { and } y=-3]
$$

and

$$
(2,-1) \quad[x=2 \text { and } y=-1]
$$

Additional Example 1:

Solve the following system of equations by the elimination method.

$$
\begin{array}{r}
x+2 y-z=-2 \\
-x-y+4 z=5 \\
2 x+5 y-z=-3
\end{array}
$$

Solution:

Eliminate x from the second and third equations.
Add the first and second equations together.

$$
\begin{array}{r}
x+2 y-z=-2 \\
-x-y+4 z=5 \\
\hline y+3 z=3
\end{array}
$$

Multiply the first equation by -2 and add to the third equation.

$$
\begin{aligned}
-2 x-4 y+2 z & =4 \\
2 x+5 y-z & =-3 \\
\hline y+z & =1
\end{aligned}
$$

The system that appears below is equivalent to the original system.

$$
\begin{gathered}
x+2 y-z=-2 \\
y+3 z=3 \\
y+z=1
\end{gathered}
$$

Multiply the second equation by -1 and add to the third equation. This will eliminate y from the third equation.

$$
\begin{aligned}
-y-3 z & =-3 \\
y+z & =1 \\
\hline-2 z & =-2
\end{aligned}
$$

Write the equivalent system

$$
\begin{aligned}
x+2 y-z & =-2 \\
y+3 z & =3 \\
-2 z & =-2
\end{aligned}
$$

Multiply the third equation by $-\frac{1}{2}$.

$$
\begin{aligned}
x+2 y-z & =-2 \\
y+3 z & =3 \\
z & =1
\end{aligned}
$$

Substitute $z=1$ in the equation $y+3 z=3$ and solve for y.

$$
\begin{aligned}
y+3(1) & =3 \\
y+3 & =3 \\
y+3-3 & =3-3 \\
y & =0
\end{aligned}
$$

Substitute $z=1$ and $y=0$ in the equation $x+2 y-z=-2$ and solve for x.

$$
\begin{aligned}
x+2(0)-1 & =-2 \\
x-1 & =-2 \\
x-1+1 & =-2+1 \\
x & =-1
\end{aligned}
$$

The solution is $x=-1, y=0$, and $z=1$ which can be written as $(-1,0,1)$.

Additional Example 2:

Solve the following system of equations by the substitution method.

$$
\begin{aligned}
x^{2}+y^{2} & =4 \\
-x+y & =2
\end{aligned}
$$

Solution:

Solve the second equation for y.

$$
\begin{aligned}
-x+y & =2 \\
-x+y+x & =2+x \\
y & =2+x
\end{aligned}
$$

Substitute $2+x$ for y in the first equation.

$$
\begin{aligned}
x^{2}+y^{2} & =4 \\
x^{2}+(2+x)^{2} & =4 \\
x^{2}+4+4 x+x^{2} & =4 \\
2 x^{2}+4 x+4 & =4 \\
2 x^{2}+4 x+4-4 & =4-4 \\
2 x^{2}+4 x & =0 \\
2 x(x+2) & =0 \\
2 x=0 \quad \text { or } \quad x+2 & =0 \\
x=0 \quad x+2-2 & =0-2 \\
x & =-2
\end{aligned}
$$

Substitute $x=0$ and then $x=-2$ into the equation $y=2+x$.

$$
\text { For } x=0, y=2+0=2 \text {. }
$$

$$
\text { For } x=-2, y=2+(-2)=0 .
$$

The solutions are $(0,2)$ and $(-2,0)$.

Additional Example 3:

Solve the following system of equations by the elimination method.

$$
\begin{aligned}
x^{2}+y & =-1 \\
2 x^{2}-y & =4
\end{aligned}
$$

Solution:

Eliminate y by adding the equations together.

$$
\begin{aligned}
& x^{2}+y=-1 \\
& 2 x^{2}-y=4 \\
& \hline 3 x^{2}=3
\end{aligned}
$$

Solve the equation $3 x^{2}=3$ by dividing both sides by 3 .

$$
\begin{aligned}
\frac{\not \partial x^{2}}{\not z} & =\frac{3}{3} \\
x^{2} & =1 \\
x & = \pm \sqrt{1} \\
x & = \pm 1
\end{aligned}
$$

Substitute $x=1$ into the first equation $x^{2}+y=-1$.

$$
\begin{aligned}
x^{2}+y & =-1 \\
1^{2}+y & =-1 \\
1+y & =-1 \\
1+y-1 & =-1-1 \\
y & =-2
\end{aligned}
$$

Substitute $x=-1$ into the first equation $x^{2}+y=-1$.

$$
\begin{aligned}
x^{2}+y & =-1 \\
(-1)^{2}+y & =-1 \\
1+y & =-1 \\
1+y-1 & =-1-1 \\
y & =-2
\end{aligned}
$$

For $x=1, y=-2$ and for $x=-1, y=-2$. The solutions are $(1,-2)$ and $(-1,-2)$.

Additional Example 4:

For the following problem, write a system of equations with two variables to model the problem and then solve the system of equations.

A rectangle's perimeter is 30 feet and its length is 4 times its width. Find the width and length of the rectangle.

Solution:

Let $x=$ width (in feet).
Let $y=$ length (in feet).

The perimeter is given as 30 feet.
$2 x+2 y=30$

The length is 4 times the width.

$$
y=4 x
$$

Set up the system of equations.

$$
\begin{aligned}
2 x+2 y & =30 \\
y & =4 x
\end{aligned}
$$

Substitute $4 x$ for y in the first equation.

$$
\begin{aligned}
2 x+(2)(4 x) & =30 \\
2 x+8 x & =30 \\
10 x & =30 \\
\frac{10 x}{10} & =\frac{30}{10} \\
x & =3
\end{aligned}
$$

Substitute 3 for x in the equation $y=4 x$

$$
y=4(3)=12
$$

The width is 3 feet and the length is 12 feet.

Exercise Set 6.2: More Systems and Applications

Solve the following systems of equations by using substitution and/or elimination.

1. $3 x-5 y+z=22$
$2 x+y=1$
$x-3 y-4 z=7$
2. $x+3 z=5$
$3 x-2 y-z=-13$
$5 x-7 y+4 z=-1$
3. $x+y+z=1$
$-2 x+3 y-5 z=20$
$3 x-y+2 z=-1$
4. $x-y+z=2$
$-4 x+2 y-3 z=-5$
$2 x+3 y+z=4$
5. $2 x+3 y-4 z=-9$
$3 x-5 y-2 z=4$
$-2 x+4 y+3 z=0$
6. $4 x-5 y+2 z=7$
$3 x+2 y-4 z=10$
$-2 x-3 y+3 z=-3$

Solve the following equations by using the substitution method.
7. $y=x^{2}$
$x+y=12$
8. $x=y^{2}$
$x-y=2$
9. $x^{2}+y^{2}=10$
$x+3 y=0$
10. $x+y^{2}=5$
$x+y=3$

Solve the following equations by using the elimination method.
11. $2 x^{2}+3 y=-7$
$3 x^{2}-4 y=32$
12. $x^{2}-2 y^{3}=7$

$$
-2 x^{2}+5 y^{3}=-13
$$

13. $\frac{6}{x}-\frac{8}{y}=11$
$\frac{4}{x}+\frac{3}{y}=-1$
14. $\frac{12}{x}+\frac{9}{y}=0$
$\frac{8}{x}-\frac{6}{y}=-4$

For each of the following problems:

(a) Write a system of equations involving two variables to model the problem.
(b) Solve your system of equations and answer the question.
15. Dillan is at a baseball game and is buying hot dogs and sodas for his family. Hot dogs cost $\$ 3$ each and sodas cost $\$ 1.75$ each. He purchases nine items and spends a total of $\$ 22.00$. How many hot dogs did he buy? How many sodas did he buy?
16. Gabrielle is buying notebooks at the bookstore. Red notebooks cost $\$ 3.50$ each, and black notebooks cost $\$ 2.20$ each. She buys fourteen notebooks and spends a total of $\$ 42.50$. How many notebooks of each color did she buy?
17. Two numbers have a sum of 77 and a difference of 13 . Find the two numbers.
18. Two numbers have a sum of 130 and a difference of 78 . Find the two numbers.
19. A rectangle has a perimeter of 26 centimeters and an area of 36 square centimeters. Find the dimensions of the rectangle.

Exercise Set 6.2: More Systems and Applications

20. A rectangle has a perimeter of 44 inches and an area of 72 square inches. Find the dimensions of the rectangle.
21. A rectangular garden has a perimeter of 200 feet, and its width is 56 feet less than its length. Find the length and width of the garden.
22. A rectangular picture frame has a perimeter of 50 inches, and its width is $\frac{2}{3}$ of its length. Find the length and width of the picture frame.
23. Paul has 16 coins in his pocket, consisting entirely of dimes and quarters. If he has a total of $\$ 3.40$ in coins, how many coins of each type are in his pocket?
24. Michael has 105 coins in his piggy bank, consisting entirely of dimes and nickels. If he has a total of $\$ 9.10$ in coins, how many coins of each type are in his piggy bank?
25. Kathy has $\$ 2,500$ to invest and she decides to invest it in two different accounts which both yield simple interest $(I=P R T)$. The first account yields 5% interest per year, and the second account yields 6\% interest per year. At the end of one year, she earns a total of $\$ 139$ in interest. How much money was invested in each account?
26. Mark has $\$ 12,000$ to invest and he decides to invest it in two different accounts which both yield simple interest $(I=P R T)$. The first account yields 4% interest per year, and the second account yields 4.5% interest per year. At the end of one year, he earns a total of \$527.50 in interest. How much money was invested in each account?
27. Jen and Anthony have received a total of 64 emails in the past week. If Jen received 5 less than twice the amount of emails that Anthony received, how many emails did they each receive?
28. Brian and Teri have changed a total of 73 diapers this week. If Teri has changed 2 less than four times the amount of diapers that Brian has changed, how many diapers did each of them change?
