Section 2.3: Quadratic Equations

Solving by Factoring
$>$ Solving by Completing the Square
$>$ Solving by the Quadratic Formula
$>$ The Discriminant

Solving by Factoring

Solving by Factoring

A quadratic equation is an equation that can be written in the form

$$
a x^{2}+b x+c=0
$$

where a, b, and c are real numbers with $a \neq 0$.
To solve a quadratic equation by factoring, rewrite the equation, if necessary, so that one side is equal to 0 and use the Zero-Product Property:

$$
a b=0 \text { if and only if } a=0 \text { or } b=0
$$

Example Problem 1: Solve the equation $2 x^{2}+7 x+3=0$ by factoring.

Solution:

The equation is in the correct form since the right-hand side is 0 . Factor the left-hand side and use the zero-product property.

$$
\begin{array}{lll}
2 x^{2}+7 x+3=0 & \\
(2 x+1)(x+3)=0 & \text { Factor } \\
2 x+1=0 & \text { or } x+3=0 & \text { Zero-Product Property } \\
2 x=-1 & \text { or } x=-3 & \\
x=-\frac{1}{2} & \text { or } x=-3 &
\end{array}
$$

The solutions are $x=-\frac{1}{2}$ and $x=-3$.

Example Problem 2: Solve the equation $x^{2}=5(x+100)$ by factoring.

Solution:

Rewrite the equation so that one side is equal to 0 . Next factor and use the zero-product property

$$
\begin{array}{cl}
x^{2}=5(x+100) & \\
x^{2}=5 x+500 & \\
x^{2}-5 x-500=0 & \\
(x-25)(x+20)=0 & \text { Factor } \\
x-25=0 \text { or } x+20=0 & \text { Zero-Product Property } \\
x=25 \text { or } x=-20 &
\end{array}
$$

The solutions are $x=25$ and $x=-20$.

Additional Example 1:

Solve the equation $x^{2}+8 x=-12$ by factoring.

Solution:

$$
\begin{gathered}
x^{2}+8 x=-12 \\
x^{2}+8 x+12=-12+12 \\
x^{2}+8 x+12=0 \\
(x+6)(x+2)=0 \\
\text { Apply the Zero-Product Property } \\
x+6=0 \quad \text { or } \quad x+2=0
\end{gathered}
$$

Solve both equations.

$$
\begin{array}{rlrl}
\text { First equation: } & & \text { Second equation: } \\
x+6 & =0 & x+2 & =0 \\
x+6-6 & =0-6 & x+2-2 & =0-2 \\
x & =-6 & x & =-2
\end{array}
$$

The solutions are $x=-6$ and $x=-2$.

Additional Example 2:

Solve the equation $5 x^{2}=-14 x+3$ by factoring.

Solution:

$$
\begin{aligned}
& 5 x^{2}=-14 x+3 \\
& 5 x^{2}+14 x=-14 x+3+14 x \\
& 5 x^{2}+14 x=3 \\
& 5 x^{2}+14 x-3=3-3 \\
& 5 x^{2}+14 x-3=0 \\
&(5 x-1)(x+3)=0 \\
& \text { Apply the Zero-Product Property } \\
& 5 x-1=0 \text { or } \quad x+3=0
\end{aligned}
$$

Solve both equations.
First equation:

$$
\begin{aligned}
5 x-1 & =0 \\
5 x-1+1 & =0+1 \\
5 x & =1 \\
\frac{p x}{\not x} & =\frac{1}{5} \\
x & =\frac{1}{5}
\end{aligned}
$$

The solutions are $x=\frac{1}{5}$ and $x=-3$.

Additional Example 3:

Solve the equation $4 x^{2}=81$ by factoring.

Solution:

$$
\begin{gathered}
4 x^{2}=81 \\
4 x^{2}-81=81-81 \\
4 x^{2}-81=0 \\
(2 x+9)(2 x-9)=0 \\
\text { Apply the Zero-Product Property } \\
2 x+9=0 \text { or } 2 x-9=0
\end{gathered}
$$

Solve both equations.

$$
\begin{array}{rlrl}
\text { First equation: } & \text { Second equation: } \\
2 x+9 & =0 & 2 x-9 & =0 \\
2 x+9-9 & =0-9 & 2 x-9+9 & =0+9 \\
2 x & =-9 & 2 x & =9 \\
\frac{2 x}{\not x} & =\frac{-9}{2} & \frac{\not 2 x}{\not 2} & =\frac{9}{2} \\
x & =-\frac{9}{2} & x & =\frac{9}{2}
\end{array}
$$

The solutions are $x=-\frac{9}{2}$ and $x=\frac{9}{2}$.

Additional Example 4:

Solve the equation $6 x^{2}-x=4 x$ by factoring.

Solution:

$$
\begin{aligned}
& 6 x^{2}-x=4 x \\
& 6 x^{2}-x-4 x=4 x-4 x \\
& 6 x^{2}-5 x=0 \\
& x(6 x-5)=0 \\
& \text { Apply the }
\end{aligned}
$$

From the first equation, we see that one solution is $x=0$. Solve the second equation.
Second equation:

$$
\begin{aligned}
6 x-5 & =0 \\
6 x-5+5 & =0+5 \\
6 x & =5 \\
\frac{\not b x}{6} & =\frac{5}{6} \\
x & =\frac{5}{6}
\end{aligned}
$$

The solutions are $x=0$ and $x=\frac{5}{6}$.

Additional Example 5:

The length of a rectangle is 3 feet longer than its width. If the area of the rectangle is 40 square feet, what is its width?

Solution:

Let $x=$ width of the rectangle (in feet).
Then $x+3=$ the length of the rectangle.

Write an equation. (width)(length) $=$ area

$$
\begin{aligned}
x(x+3) & =40 \\
x^{2}+3 x & =40 \\
x^{2}+3 x-40 & =40-40 \\
x^{2}+3 x-40 & =0 \\
(x+8)(x-5) & =0
\end{aligned}
$$

Apply the Zero-Product Property.
$x+8=0$ or $x-5=0$
Solve both equations.

First equation:

$$
\begin{aligned}
x+8 & =0 \\
x+8-8 & =0-8 \\
x & =-8
\end{aligned}
$$

Second equation:

$$
\begin{aligned}
x-5 & =0 \\
x-5+5 & =0+5 \\
x & =5
\end{aligned}
$$

We must rule out -8 for the width since the width cannot be negative.

Check the results.
$x=5$
$x+3=5+3=8$
(Width) 5 ft
(Length) 8 ft
Area $=(5 \mathrm{ft})(8 \mathrm{ft})=40 \mathrm{sq} \mathrm{ft}$

Answer the problem in a complete sentence.

The width of the rectangle is 5 feet.

Solving by Completing the Square

Solving by Completing the Square

To solve a quadratic equation $x^{2}+b x+c=0$ by the method of completing the square, rewrite the equation as $x^{2}+b x=-c$ and make the left-hand side a perfect square.
To make $x^{2}+b x$ a perfect square, add $\left(\frac{b}{2}\right)^{2}$, the square of half the coefficient of x, to get $x^{2}+b x+\left(\frac{b}{2}\right)^{2}=\left(x+\frac{b}{2}\right)^{2}$

To solve $a x^{2}+b x+c=0$ (where $a \neq 0$ and $a \neq 1$) by the method of completing the square, rewrite the equation as $a x^{2}+b x=-c$ and then divide both sides by a to get $x^{2}+\frac{b}{a} x=-\frac{c}{a}$. Next make $x^{2}+\frac{b}{a} x$ a perfect square by adding $\left(\frac{b}{2 a}\right)^{2}$, the square of half the coefficient of x.

Example Problem 1: Solve the equation $x^{2}-10 x+3=0$ by completing the square.

Solution:

$$
\begin{aligned}
x^{2}-10 x+3 & =0 & & \\
x^{2}-10 x & =-3 & & \text { Subtract } 3 \text { from both sides. } \\
x^{2}-10 x+25 & =-3+25 & & \text { Complete the square by adding }\left(\frac{-10}{2}\right)^{2}=25 . \\
(x-5)^{2} & =22 & & \text { Factor the perfect square on the LHS. } \\
x-5 & = \pm \sqrt{22} & & \\
x & =5 \pm \sqrt{22} & &
\end{aligned}
$$

The solutions are $x=5+\sqrt{22}$ and $x=5-\sqrt{22}$.

Example Problem 2: Solve the equation $2 x^{2}+8 x+1=0$ by completing the square.

Solution:

$$
\begin{aligned}
2 x^{2}+8 x+1 & =0 & \\
2 x^{2}+8 x & =-1 & \text { Subtract } 1 \text { from both sides. } \\
x^{2}+4 x & =-\frac{1}{2} & \text { Divide both sides by } 2 . \\
x^{2}+4 x+4 & =-\frac{1}{2}+4 & \text { Complete the square by adding }\left(\frac{4}{2}\right)^{2}=4 . \\
x^{2}+4 x+4 & =\frac{7}{2} & \text { Simplify on the RHS. } \\
(x+2)^{2} & =\frac{7}{2} & \text { Factor the perfect square on the LHS. } \\
x+2 & = \pm \sqrt{\frac{7}{2}} & \\
x+2 & = \pm \frac{\sqrt{14}}{2} & \sqrt{\frac{7}{2}}=\frac{\sqrt{7}}{\sqrt{2}}=\frac{\sqrt{7}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{14}}{2} \\
x & =-2 \pm \frac{\sqrt{14}}{2} &
\end{aligned}
$$

The solutions are $x=-2-\frac{\sqrt{14}}{2}$ and $x=-2+\frac{\sqrt{14}}{2}$.

Additional Example 1:

Solve the equation $x^{2}-4 x-5=0$ by completing the square.

Solution:

$$
\begin{aligned}
x^{2}-4 x-5 & =0 \\
x^{2}-4 x-5+5 & =0+5 \\
x^{2}-4 x & =5
\end{aligned}
$$

$x^{2}-4 x+4=5+4 \quad$ Complete the square for $x^{2}-4 x$ by adding $\left(\frac{1}{2} \cdot(-4)\right)^{2}=4$.
$x^{2}-4 x+4=9$
$(x-2)^{2}=9$
$x-2= \pm \sqrt{9}$
$x-2= \pm 3$
$x-2=3$ or $x-2=-3$

Solve each equation by adding 2 to both sides.

First equation: Second equation:

$$
\begin{array}{rlrl}
x-2 & =3 & x-2 & =-3 \\
x-2+2 & =3+2 & x-2+2 & =-3+2 \\
x & =5 & x & =-1
\end{array}
$$

The solutions are $x=5$ and $x=-1$.

Additional Example 2:

Solve the equation $x^{2}+10 x+13=0$ by completing the square.

Solution:

$$
\begin{aligned}
x^{2}+10 x & +13=0 \\
x^{2}+10 x+13-13 & =0-13 \\
x^{2} & +10 x=-13 \\
x^{2}+10 x+25 & =-13+25 \quad \text { Complete the square for } x^{2}+10 x \quad \text { by adding }\left(\frac{1}{2} \cdot 10\right)^{2}=25 . \\
x^{2}+10 x+25 & =12 \\
(x+5)^{2} & =12 \\
x+5 & = \pm \sqrt{12} \\
x+5 & = \pm 2 \sqrt{3} \\
x+5-5 & = \pm 2 \sqrt{3}-5 \\
x & =-5 \pm 2 \sqrt{3}
\end{aligned}
$$

The solutions are $x=-5-2 \sqrt{3}$ and $x=-5+2 \sqrt{3}$.

Additional Example 3:

Solve the equation $x^{2}=1-\frac{2}{3} x$ by completing the square.

Solution:

$$
\begin{aligned}
x^{2} & =1-\frac{2}{3} x \\
x^{2}+\frac{2}{3} x & =1-\frac{2}{3} x+\frac{2}{3} x \\
x^{2}+\frac{2}{3} x & =1
\end{aligned}
$$

$$
\begin{array}{rlrl}
x^{2}+\frac{2}{3} x+\frac{1}{9} & =1+\frac{1}{9} & & \text { Complete the square for } x^{2}+\frac{2}{3} x \text { by adding }\left(\frac{1}{2} \cdot \frac{2}{3}\right)^{2}=\frac{1}{9} \\
x^{2}+\frac{2}{3} x+\frac{1}{9} & =\frac{10}{9} & \\
\left(x+\frac{1}{3}\right)^{2} & =\frac{10}{9} & \\
x+\frac{1}{3} & = \pm \sqrt{\frac{10}{9}} & & \\
x+\frac{1}{3} & = \pm \frac{\sqrt{10}}{3} & & \\
x+\frac{1}{3}-\frac{1}{3} & = \pm \frac{\sqrt{10}}{3}-\frac{1}{3} & &
\end{array}
$$

The solutions are $x=-\frac{1}{3}-\frac{\sqrt{10}}{3}$ and $x=-\frac{1}{3}+\frac{\sqrt{10}}{3}$.

Additional Example 4:

Solve the equation $2 x^{2}+8 x+3=0$ by completing the square.

Solution:

$$
\begin{aligned}
2 x^{2}+8 x+3 & =0 \\
2 x^{2}+8 x+3-3 & =0-3 \\
2 x^{2}+8 x & =-3 \\
\frac{2 x^{2}+8 x}{2} & =\frac{-3}{2} \\
x^{2}+4 x & =-\frac{3}{2} \\
x^{2}+4 x+4 & =-\frac{3}{2}+4 \quad \text { Complete the square for } x^{2}+4 x \text { by adding }\left(\frac{1}{2} \cdot 4\right)^{2}=4 . \\
x^{2}+4 x+4 & =\frac{5}{2} \\
(x+2)^{2} & =\frac{5}{2}
\end{aligned}
$$

$$
\begin{aligned}
x+2 & = \pm \sqrt{\frac{5}{2}} \\
x+2 & = \pm \frac{\sqrt{10}}{2} \quad \text { Simplify the radical. } \sqrt{\frac{5}{2}}=\frac{\sqrt{5}}{\sqrt{2}}=\frac{\sqrt{5}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{10}}{2} \\
x+2-2 & = \pm \frac{\sqrt{10}}{2}-2 \\
x & =-2 \pm \frac{\sqrt{10}}{2}
\end{aligned}
$$

The solutions are $x=-2-\frac{\sqrt{10}}{2}$ and $x=-2+\frac{\sqrt{10}}{2}$.

Solving by the Quadratic Formula

Solving by the Quadratic Formula

The solutions of the equation $a x^{2}+b x+c=0$, where $a \neq 0$, can be found $b y$ using the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example Problem 1: Solve the equation $5 x^{2}-2 x-2=0$ by the quadratic formula.

Solution:

Substitute $a=5, b=-2$, and $c=-2$ into the quadratic formula.

$$
x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(5)(-2)}}{2(5)}=\frac{2 \pm \sqrt{4+40}}{10}=\frac{2 \pm \sqrt{44}}{10}=\frac{2 \pm 2 \sqrt{11}}{10}=\frac{1 \pm \sqrt{11}}{5}
$$

The solutions are $x=\frac{1+\sqrt{11}}{5}$ and $x=\frac{1-\sqrt{11}}{5}$.

Example Problem 2: Solve the equation $4 x^{2}-x=3$ by the quadratic formula.

Solution:

Rewrite the equation so that the right-hand side is 0 .
$4 x^{2}-x=3$
$4 x^{2}-x-3=0$
Substitute $a=4, b=-1$, and $c=-3$ into the quadratic formula.
$x=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(4)(-3)}}{2(4)}=\frac{1 \pm \sqrt{1+48}}{8}=\frac{1 \pm \sqrt{49}}{8}=\frac{1 \pm 7}{8}$
$x=\frac{1-7}{8}=\frac{-6}{8}=-\frac{3}{4}$
or
$x=\frac{1+7}{8}=\frac{8}{8}=1$

The solutions are $x=-\frac{3}{4}$ and $x=1$.

Additional Example 1:

Solve the equation $x^{2}-4 x=5$ by the quadratic formula.

Solution:

To solve the equation using the quadratic formula, rewrite the equation so that the RHS is equal to 0 .

$$
\begin{array}{r}
x^{2}-4 x=5 \\
x^{2}-4 x-5=0
\end{array}
$$

Substitute $a=1, b=-4$, and $c=-5$ into the quadratic formula.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(-5)}}{2(1)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{4 \pm \sqrt{16+20}}{2} \\
& =\frac{4 \pm \sqrt{36}}{2} \\
& =\frac{4 \pm 6}{2} \\
x & =\frac{4+6}{2}=5 \text { or } x=\frac{4-6}{2}=-1
\end{aligned}
$$

The solutions are $x=5$ and $x=-1$.

Additional Example 2:

Solve the equation $x^{2}+10 x+13=0$ by the quadratic formula.

Solution:

Substitute $a=1, b=10$, and $c=13$ into the quadratic formula.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-10 \pm \sqrt{(10)^{2}-4(1)(13)}}{2(1)} \\
& =\frac{-10 \pm \sqrt{100-52}}{2} \\
& =\frac{-10 \pm \sqrt{48}}{2} \\
& =\frac{-10 \pm 4 \sqrt{3}}{2} \\
& =-5 \pm 2 \sqrt{3}
\end{aligned}
$$

The solutions are $x=-5-2 \sqrt{3}$ and $x=-5+2 \sqrt{3}$.

Additional Example 3:

Solve the equation $2 x^{2}+8 x+3=0$ by the quadratic formula.

Solution:

Substitute $a=2, b=8$, and $c=3$ into the quadratic formula.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-8 \pm \sqrt{8^{2}-4(2)(3)}}{2(2)} \\
& =\frac{-8 \pm \sqrt{64-24}}{4} \\
& =\frac{-8 \pm \sqrt{40}}{4} \\
& =\frac{-8 \pm 2 \sqrt{10}}{4} \\
& =-2 \pm \frac{1}{2} \sqrt{10}
\end{aligned}
$$

The solutions are $x=-2-\frac{1}{2} \sqrt{10}$ and $x=-2+\frac{1}{2} \sqrt{10}$.

Additional Example 4:

The sum of the squares of two positive consecutive even integers
is 1460 . What is the smaller integer?

Solution:

Let $x=$ the smaller integer
Then $x+2=$ the larger integer

Write an equation.
(square of the smaller integer $)+($ square of the larger integer $)=1460$

$$
\begin{aligned}
x^{2}+(x+2)^{2} & =1460 \\
x^{2}+x^{2}+4 x+4 & =1460 \\
2 x^{2}+4 x+4 & =1460 \\
2 x^{2}+4 x+4-1460 & =1460-1460 \\
2 x^{2}+4 x-1456 & =0
\end{aligned}
$$

CHAPTER 2 Solving Equations and Inequalities

Substitute $a=2, b=4$, and $c=-1456$ into the quadratic formula.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-4 \pm \sqrt{4^{2}-4(2)(-1456)}}{2(2)} \\
& =\frac{-4 \pm \sqrt{16+11648}}{4} \\
& =\frac{-4 \pm \sqrt{11664}}{4} \\
& =\frac{-4 \pm 108}{4}
\end{aligned}
$$

Determine the solutions to the quadratic equation $2 x^{2}+4 x-1456=0$.
$x=\frac{-4-108}{4}=\frac{-112}{4}=-28$ or $x=\frac{-4+108}{4}=\frac{104}{4}=26$

We must rule out the solution $x=-28$ since the problem calls for positive integers.

Check the results.

$$
\begin{aligned}
& x=26 \\
& x+2=28 \\
& (26)^{2}=676 \\
& (28)^{2}=784
\end{aligned}
$$

$$
676+784=1460 \quad \checkmark
$$

Answer the problem in a complete sentence.

The smaller integer is 26 .

The Discriminant

The Discriminant

The discriminant of the equation $a x^{2}+b x+c=0(a \neq 0)$ is given by

$$
D=b^{2}-4 a c .
$$

If $D>0$, then the equation $a x^{2}+b x+c=0$ has two distinct real solutions
If $D=0$, then the equation $a x^{2}+b x+c=0$ has exactly one real solution.
If $D<0$, then the equation $a x^{2}+b x+c=0$ has no real solution.

Example Problem 1: Without solving the equation $x^{2}-x-6=0$, determine how many real solutions the equation has.

Solution:

Find the discriminant.
$D=(-1)^{2}-4(1)(-6)=1+24=25>0$. The equation has two distinct real solutions.
The figure below shows why the equation $x^{2}-x-6=0$ has two real solutions.

The two solutions to the equation $x^{2}-x-6=0$ are $x=-2$ and $x=3$, which are the x-intercepts of the graph of the equation $y=x^{2}-x-6$.

Example Problem 2: Without solving the equation $4 x^{2}+12 x+9=0$, determine how many real solutions the equation has.

Solution:

Find the discriminant.
$D=(12)^{2}-4(4)(9)=144-144=0$. The equation has exactly one real solution.
The figure below shows why the equation $4 x^{2}+12 x+9=0$ has one real solution.

The solution to the equation $4 x^{2}+12 x+9=0$ is $x=-1.5$, which is the x-intercept of the graph of the equation $y=4 x^{2}+12 x+9$.

Example Problem 3: Without solving the equation $x^{2}+x+5=0$, determine how many real solutions the equation has.

Solution:

Find the discriminant.
$D=1^{2}-4(1)(5)=1-20=-19<0$. The equation has no real solution.
The figure below shows why the equation $x^{2}+x+5=0$ has no real solution.

The equation $x^{2}+x+5=0$ has no real solution. The graph of the equation $y=x^{2}+x+5$ does not cross the x-axis. The graph has no x-intercepts.

Additional Example 1:

Use the discriminant to determine the number of real solutions to the equation $4 x^{2}=5-3 x$. (Do not solve the equation.)

Solution:

Rewrite the equation so that the RHS is equal to 0 .

$$
\begin{aligned}
4 x^{2} & =5-3 x \\
4 x^{2}+3 x & =5-3 x+3 x \\
4 x^{2}+3 x & =5 \\
4 x^{2}+3 x-5 & =5-5 \\
4 x^{2}+3 x-5 & =0
\end{aligned}
$$

Substitute $a=4, b=3$, and $c=-5$ into the discrimifant.

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =3^{2}-4(4)(-5) \\
& =9+80 \\
& =89
\end{aligned}
$$

The equation has two distinct real solutions since $D=89>0$.

Additional Example 2:

Use the discriminant to determine the number of real solutions to the equation $x^{2}+6 x=-13$. (Do not solve the equation.)

Solution:

Rewrite the equation so that the RHS is equal to 0 .

$$
\begin{aligned}
x^{2}+6 x & =-13 \\
x^{2}+6 x+13 & =-13+13 \\
x^{2}+6 x+13 & =0
\end{aligned}
$$

Substitute $a=1, b=6$, and $c=13$ into the discriminant.

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =6^{2}-4(1)(13) \\
& =36-52 \\
& =-16
\end{aligned}
$$

The equation has no real solutions since $D=-16<0$.

Additional Example 3:

Use the discriminant to determine the number of real solutions to the equation $25 x^{2}+60 x=-36$. (Do not solve the equation.)

Solution:

Rewrite the equation so that the RHS is equal to 0 .

$$
\begin{aligned}
25 x^{2}+60 x & =-36 \\
25 x^{2}+60 x+36 & =-36+36 \\
25 x^{2}+60 x+36 & =0
\end{aligned}
$$

Substitute $a=25, b=60$, and $c=36$ into the discriminant.

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(60)^{2}-4(25)(36) \\
& =3600-3600 \\
& =0
\end{aligned}
$$

The equation has exactly one real solution since $D=0$.

Additional Example 4:

Use the discriminant to find all values of k so that the equation $2 k x^{2}+8 x+k=0$ has exactly one real solution.

Solution:

Substitute $a=2 k, b=8$, and $c=k$ into the discriminant.

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =8^{2}-4(2 k)(k) \\
& =64-8 k^{2}
\end{aligned}
$$

The equation has exactly one solution when $D=0$. Set $D=0$ and solve the resulting equation for k.

$$
\begin{aligned}
0 & =64-8 k^{2} \\
0+8 k^{2} & =64-8 k^{2}+8 k^{2} \\
8 k^{2} & =64 \\
\frac{\beta k^{2}}{\not 2} & =\frac{64}{8} \\
k^{2} & =8 \\
k & = \pm \sqrt{8} \\
k & = \pm 2 \sqrt{2}
\end{aligned}
$$

Exercise Set 2.3: Quadratic Equations

Solve the following equations by factoring.

1. $x^{2}-10 x+21=0$
2. $x^{2}+13 x+40=0$
3. $x(x-2)=35$
4. $x(x+8)=20$
5. $x^{2}+14 x=72$
6. $x^{2}-60=11 x$
7. $2 x^{2}-7 x-15=0$
8. $3 x^{2}-7 x+4=0$
9. $6 x^{2}+17 x=-12$
10. $10 x^{2}-7 x=6$
11. $x^{2}-25=0$
12. $x^{2}-49=0$
13. $4 x^{2}-9=0$
14. $36 x^{2}-25=0$

Solve the following equations by factoring. To simplify the process, remember to first factor out the Greatest Common Factor (GCF).
15. $x^{2}-8 x=0$
16. $x^{2}+10 x=0$
17. $-3 x^{2}+21 x=0$
18. $5 x^{2}-30 x=0$
19. $3 x^{2}-12=0$
20. $-7 x^{2}+7=0$
21. $-5 x^{2}-15 x+90=0$
22. $-4 x^{2}+20 x+24=0$
23. $80 x^{2}+230 x-30=0$
24. $12 x^{2}-75 x+18=0$

Find all real solutions of the following equations by completing the square.
25. $x^{2}+8 x+12=0$
26. $x^{2}-6 x-40=0$
27. $x(x-10)=-18$
28. $x^{2}+4 x=-8$
29. $x^{2}+14 x+60=0$
30. $x(x+12)=-28$
31. $x^{2}+5 x-5=0$
32. $x^{2}-7 x+2=0$
33. $3 x^{2}-12 x-5=0$
34. $2 x^{2}+12 x=-3$
35. $-4 x^{2}+8 x=-6$
36. $-5 x^{2}-40 x-78=0$
37. $3 x^{2}-5 x=-2$
38. $8 x^{2}-6 x-5=0$

Find all real solutions of the following equations by using the quadratic formula.
39. $x^{2}+5 x+2=0$
40. $x^{2}-7 x+3=0$
41. $x^{2}-6 x+8=0$
42. $x^{2}-2 x=15$
43. $x^{2}+5 x+7=0$
44. $x^{2}-8 x=-16$
45. $x^{2}+10 x+25=0$
46. $4 x^{2}-6 x+5=0$
47. $3 x^{2}-5 x=-1$
48. $2 x^{2}+3 x-6=0$
49. $-2 x^{2}-6 x-3=0$
50. $-5 x^{2}+8 x-1=0$

Exercise Set 2.3: Quadratic Equations

Find all real solutions of the following equations by using a method of your choice.
51. $x^{2}-10 x+16=0$
52. $x^{2}-6 x-8=0$
53. $2 x^{2}-4 x=5$
54. $3 x^{2}+12 x=36$

Use the discriminant to determine the number of real solutions of each equation. (Do not solve the equation.)
55. $x^{2}-5 x+2=0$
56. $2 x^{2}+3 x+7=0$
57. $x^{2}+4 x=-4$
58. $3 x^{2}-6 x=-3$
59. $x^{2}+4 x=-5$
60. $3 x^{2}+7 x-2=0$
61. $x^{2}-c x-d=0$, where $d>0$
62. $3 x^{2}-r x+t=0$, where $t<0$

Use the discriminant to find all values of k so that each of the following equations has exactly one solution.
63. $k x^{2}+6 x+3 k=0$
64. $4 x^{2}+k x+49=0$

For each of the following problems:

(a) Model the situation by writing appropriate equation(s).
(b) Solve the equation(s) and then answer the question posed in the problem.
65. The length of a rectangular frame is 5 cm longer than its width. If the area of the frame is $36 \mathrm{~cm}^{2}$, find the length and width of the frame.
66. The height of a right triangle is 4 inches longer than its base. If its diagonal measures 20 inches, find the base and the height of the triangle.
67. The height of a triangle is 3 cm shorter than its base. If the area of the triangle is $90 \mathrm{~cm}^{2}$, find the base and height of the triangle.
68. Find x if the area of the figure below is $26 \mathrm{~cm}^{2}$. (Note that the figure may not be drawn to scale.)

69. Find two consecutive odd integers that have a product of 255.
70. Find two numbers that have a sum of 39 and a product of 350 .
71. John can paint the fence in 3 hours less time than Chris. If it takes them $\frac{4}{5}$ of an hour when working together, how long does it take each of them to paint the fence individually?
72. Marie takes 1 hour more time to clean the house than Tina. If it takes them $1 \frac{1}{5}$ hours when working together, how long would it take each of them to clean the house individually?

