Section 2.3: Quadratic Equations

- Solving by Factoring
- Solving by Completing the Square
- Solving by the Quadratic Formula
- The Discriminant

Solving by Factoring

Solving by Factoring

A quadratic equation is an equation that can be written in the form

 $ax^2 + bx + c = 0$

where a, b, and c are real numbers with $a \neq 0$.

To solve a quadratic equation by factoring, rewrite the equation, if necessary, so that one side is equal to 0 and use the **Zero-Product Property:**

ab = 0 if and only if a = 0 or b = 0

Example Problem 1: Solve the equation $2x^2 + 7x + 3 = 0$ by factoring.

Solution:

The equation is in the correct form since the right-hand side is 0. Factor the left-hand side and use the zero-product property.

$$2x^{2} + 7x + 3 = 0$$

$$(2x + 1)(x + 3) = 0$$
Factor
$$2x + 1 = 0 \text{ or } x + 3 = 0$$
Zero-Product Property
$$2x = -1 \text{ or } x = -3$$

$$x = -\frac{1}{2} \text{ or } x = -3$$
The solutions are $x = -\frac{1}{2}$ and $x = -3$.

Example Problem 2: Solve the equation $x^2 = 5(x+100)$ by factoring.

Solution:

Rewrite the equation so that one side is equal to 0. Next factor and use the zero-product property.

 $x^{2} = 5(x+100)$ $x^{2} = 5x+500$ $x^{2} - 5x - 500 = 0$ (x-25)(x+20) = 0Factor x-25 = 0 or x+20 = 0Zero-Product Property x = 25 or x = -20

The solutions are x = 25 and x = -20.

Additional Example 1:

Solve the equation $x^2 + 8x = -12$ by factoring.

Solution:

$$x^{2} + 8x = -12$$

$$x^{2} + 8x + 12 = -12 + 12$$

$$x^{2} + 8x + 12 = 0$$

$$(x+6)(x+2) = 0$$

Apply the Zero-Product Property

$$x+6=0 \text{ or } x+2=0$$

Solve both equations.

First equation:	Second equation:
x + 6 = 0	x + 2 = 0
x + 6 - 6 = 0 - 6	x + 2 - 2 = 0 - 2
x = -6	x = -2

The solutions are x = -6 and x = -2.

Additional Example 2:

Solve the equation $5x^2 = -14x + 3$ by factoring.

Solution:

 $5x^{2} = -14x + 3$ $5x^{2} + 14x = -14x + 3 + 14x$ $5x^{2} + 14x = 3$ $5x^{2} + 14x - 3 = 3 - 3$ $5x^{2} + 14x - 3 = 0$ (5x - 1)(x + 3) = 0Apply the Zero-Product Property 5x - 1 = 0 or x + 3 = 0

Solve both equations.

First equation:	Second equation:
5x - 1 = 0	x + 3 = 0
5x - 1 + 1 = 0 + 1	x + 3 - 3 = 0 - 3
5x = 1	x = -3
$\frac{\cancel{p}x}{\cancel{p}} = \frac{1}{5}$	
$x = \frac{1}{5}$	
The solutions are $x = \frac{1}{5}$	and $x = -3$.

Additional Example 3:

Solve the equation $4x^2 = 81$ by factoring.

Solution:

 $4x^{2} = 81$ $4x^{2} - 81 = 81 - 81$ $4x^{2} - 81 = 0$ (2x + 9)(2x - 9) = 0Apply the Zero-Product Property 2x + 9 = 0 or 2x - 9 = 0 Solve both equations.

First equation:	Second equation:
2x + 9 = 0	2x - 9 = 0
2x + 9 - 9 = 0 - 9	2x - 9 + 9 = 0 + 9
2x = -9	2x = 9
$\frac{\cancel{2}x}{\cancel{2}} = \frac{-9}{2}$	$\frac{\cancel{2}x}{\cancel{2}} = \frac{9}{2}$
$x = -\frac{9}{2}$	$x = \frac{9}{2}$

The solutions are $x = -\frac{9}{2}$ and $x = \frac{9}{2}$.

Additional Example 4:

Solve the equation $6x^2 - x = 4x$ by factoring.

Solution:

$$6x^{2} - x = 4x$$

$$6x^{2} - x - 4x = 4x - 4x$$

$$6x^{2} - 5x = 0$$

$$x(6x - 5) = 0$$

Apply the Zero-Product Property x = 0 or 6x - 5 = 0

From the first equation, we see that one solution is x = 0. Solve the second equation.

Second equation:

$$6x-5=0$$

$$6x-5+5=0+5$$

$$6x=5$$

$$\frac{\cancel{8}x}{\cancel{6}}=\frac{5}{6}$$

$$x=\frac{5}{6}$$

The solutions are x = 0 and $x = \frac{5}{6}$.

Additional Example 5:

The length of a rectangle is 3 feet longer than its width. If the area of the rectangle is 40 square feet, what is its width?

Solution:

Let x = width of the rectangle (in feet).

Then x + 3 = the length of the rectangle.

Write an equation. (width)(length) = area

x(x+3) = 40 $x^{2}+3x = 40$ $x^{2}+3x-40 = 40-40$ $x^{2}+3x-40 = 0$ (x+8)(x-5) = 0

Apply the Zero-Product Property. x+8=0 or x-5=0

Solve both equations.

First equation:	Second equation:
x + 8 = 0	x - 5 = 0
x + 8 - 8 = 0 - 8	x - 5 + 5 = 0 + 5
x = -8	<i>x</i> = 5

We must rule out -8 for the width since the width cannot be negative.

Check the results.

x = 5 x + 3 = 5 + 3 = 8(Width) 5 ft (Length) 8 ft Area = (5 ft)(8 ft) = 40 sq ft ✓

Answer the problem in a complete sentence.

The width of the rectangle is 5 feet.

Solving by Completing the Square

Solving by Completing the Square To solve a quadratic equation $x^2 + bx + c = 0$ by the method of completing the square, rewrite the equation as $x^2 + bx = -c$ and make the left-hand side a perfect square. To make $x^2 + bx$ a perfect square, $add\left(\frac{b}{2}\right)^2$, the square of half the coefficient of x, to get $x^2 + bx + \left(\frac{b}{2}\right)^2 = \left(x + \frac{b}{2}\right)^2$. To solve $ax^2 + bx + c = 0$ (where $a \neq 0$ and $a \neq 1$) by the method of completing the square, rewrite the equation as $ax^2 + bx = -c$ and then divide both sides by a to get $x^2 + \frac{b}{a}x = -\frac{c}{a}$. Next make $x^2 + \frac{b}{a}x$ a perfect square by adding $\left(\frac{b}{2a}\right)^2$, the square of half the coefficient of x.

Example Problem 1: Solve the equation $x^2 - 10x + 3 = 0$ by completing the square.

Solution:

 $x^{2} - 10x + 3 = 0$ $x^{2} - 10x = -3$ Subtract 3 from both sides. $x^{2} - 10x + 25 = -3 + 25$ Complete the square by adding $\left(\frac{-10}{2}\right)^{2} = 25$. $(x-5)^{2} = 22$ Factor the perfect square on the LHS. $x - 5 = \pm \sqrt{22}$ $x = 5 \pm \sqrt{22}$

The solutions are $x = 5 + \sqrt{22}$ and $x = 5 - \sqrt{22}$.

Example Problem 2: Solve the equation $2x^2 + 8x + 1 = 0$ by completing the square.

Solution:

 $2x^{2} + 8x + 1 = 0$ $2x^{2} + 8x = -1$ Subtract 1 from both sides. $x^{2} + 4x = -\frac{1}{2}$ Divide both sides by 2. $x^{2} + 4x + 4 = -\frac{1}{2} + 4$ Complete the square by adding $\left(\frac{4}{2}\right)^{2} = 4$. $x^{2} + 4x + 4 = \frac{7}{2}$ Simplify on the RHS. $(x + 2)^{2} = \frac{7}{2}$ Factor the perfect square on the LHS. $x + 2 = \pm \sqrt{\frac{7}{2}}$ $x + 2 = \pm \sqrt{\frac{7}{2}}$ $\sqrt{\frac{7}{2}} = \frac{\sqrt{7}}{\sqrt{2}} = \frac{\sqrt{7}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{14}}{2}$ $x = -2 \pm \frac{\sqrt{14}}{2}$

The solutions are $x = -2 - \frac{\sqrt{14}}{2}$ and $x = -2 + \frac{\sqrt{14}}{2}$.

Additional Example 1:

Solve the equation $x^2 - 4x - 5 = 0$ by completing the square.

Solution:

$$x^{2} - 4x - 5 = 0$$

$$x^{2} - 4x - 5 + 5 = 0 + 5$$

$$x^{2} - 4x = 5$$

$$x^{2} - 4x + 4 = 5 + 4$$
Complete the square for $x^{2} - 4x$ by adding $\left(\frac{1}{2} \cdot (-4)\right)^{2} = 4$.
$$x^{2} - 4x + 4 = 9$$

$$x^{2} - 4x + 4 = 9$$

(x-2)² = 9
x-2= ± $\sqrt{9}$
x-2= ±3

x - 2 = 3 or x - 2 = -3

MATH 1310 College Algebra

Solve each equation by adding 2 to both sides.

First equation:	Second equation:
x - 2 = 3	x - 2 = -3
x - 2 + 2 = 3 + 2	x - 2 + 2 = -3 + 2
<i>x</i> = 5	x = -1

The solutions are x = 5 and x = -1.

Additional Example 2:

Solve the equation $x^2 + 10x + 13 = 0$ by completing the square.

Solution:

$$x^{2} + 10x + 13 = 0$$

$$x^{2} + 10x + 13 - 13 = 0 - 13$$

$$x^{2} + 10x = -13$$

$$x^{2} + 10x + 25 = -13 + 25$$

$$x^{2} + 10x + 25 = 12$$

$$(x + 5)^{2} = 12$$

$$x + 5 = \pm\sqrt{12}$$

$$x + 5 = \pm\sqrt{12}$$

$$x + 5 = \pm2\sqrt{3}$$

$$x + 5 - 5 = \pm2\sqrt{3} - 5$$

$$x = -5 \pm 2\sqrt{3}$$

The solutions are $x = -5 - 2\sqrt{3}$ and $x = -5 + 2\sqrt{3}$.

Additional Example 3:

Solve the equation $x^2 = 1 - \frac{2}{3}x$ by completing the square.

Solution:

$$x^{2} = 1 - \frac{2}{3}x$$
$$x^{2} + \frac{2}{3}x = 1 - \frac{2}{3}x + \frac{2}{3}x$$
$$x^{2} + \frac{2}{3}x = 1$$

$$\begin{aligned} x^{2} + \frac{2}{3}x + \frac{1}{9} &= 1 + \frac{1}{9} \\ x^{2} + \frac{2}{3}x + \frac{1}{9} &= \frac{10}{9} \\ \left(x + \frac{1}{3}\right)^{2} &= \frac{10}{9} \\ x + \frac{1}{3} &= \pm \sqrt{\frac{10}{9}} \\ x + \frac{1}{3} &= \pm \sqrt{\frac{10}{3}} \\ x + \frac{1}{3} &= \pm \frac{\sqrt{10}}{3} \\ x + \frac{1}{3} &= \pm \frac{\sqrt{10}}{3} - \frac{1}{3} \\ x &= -\frac{1}{3} \pm \frac{\sqrt{10}}{3} \\ \end{aligned}$$
The solutions are $x = -\frac{1}{3} - \frac{\sqrt{10}}{3}$ and $x = -\frac{1}{3} + \frac{\sqrt{10}}{3}$.

Additional Example 4:

Solve the equation $2x^2 + 8x + 3 = 0$ by completing the square.

Solution:

$$2x^{2} + 8x + 3 = 0$$

$$2x^{2} + 8x + 3 - 3 = 0 - 3$$

$$2x^{2} + 8x = -3$$

$$\frac{2x^{2} + 8x}{2} = \frac{-3}{2}$$

$$x^{2} + 4x = -\frac{3}{2}$$

$$x^{2} + 4x + 4 = -\frac{3}{2} + 4$$
 Complete the square for $x^{2} + 4x$ by adding $\left(\frac{1}{2} \cdot 4\right)^{2} = 4$.

$$x^{2} + 4x + 4 = \frac{5}{2}$$
$$(x+2)^{2} = \frac{5}{2}$$

$$x + 2 = \pm \sqrt{\frac{5}{2}}$$

$$x + 2 = \pm \frac{\sqrt{10}}{2}$$
Simplify the radical. $\sqrt{\frac{5}{2}} = \frac{\sqrt{5}}{\sqrt{2}} = \frac{\sqrt{5}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{10}}{2}$

$$x + 2 - 2 = \pm \frac{\sqrt{10}}{2} - 2$$

$$x = -2 \pm \frac{\sqrt{10}}{2}$$

The solutions are
$$x = -2 - \frac{\sqrt{10}}{2}$$
 and $x = -2 + \frac{\sqrt{10}}{2}$.

Solving by the Quadratic Formula

Solving by the Quadratic Formula The solutions of the equation $ax^2 + bx + c = 0$, where $a \neq 0$, can be found by using the quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Example Problem 1: Solve the equation $5x^2 - 2x - 2 = 0$ by the quadratic formula.

Solution:

Substitute a = 5, b = -2, and c = -2 into the quadratic formula.

$$x = \frac{-(-2)\pm\sqrt{(-2)^2 - 4(5)(-2)}}{2(5)} = \frac{2\pm\sqrt{4+40}}{10} = \frac{2\pm\sqrt{44}}{10} = \frac{2\pm2\sqrt{11}}{10} = \frac{1\pm\sqrt{11}}{5}$$

The solutions are $x = \frac{1+\sqrt{11}}{5}$ and $x = \frac{1-\sqrt{11}}{5}$.

Example Problem 2: Solve the equation $4x^2 - x = 3$ by the quadratic formula.

Solution:

Rewrite the equation so that the right-hand side is 0.

$$4x^2 - x = 3$$
$$4x^2 - x - 3 = 0$$

Substitute a = 4, b = -1, and c = -3 into the quadratic formula.

$$x = \frac{-(-1)\pm\sqrt{(-1)^2 - 4(4)(-3)}}{2(4)} = \frac{1\pm\sqrt{1+48}}{8} = \frac{1\pm\sqrt{49}}{8} = \frac{1\pm7}{8}$$
$$x = \frac{1-7}{8} = \frac{-6}{8} = -\frac{3}{4}$$
or
$$x = \frac{1+7}{8} = \frac{8}{8} = 1$$

The solutions are $x = -\frac{3}{4}$ and x = 1.

Additional Example 1:

Solve the equation $x^2 - 4x = 5$ by the quadratic formula.

Solution:

To solve the equation using the quadratic formula, rewrite the equation so that the RHS is equal to 0.

$$x^2 - 4x = 5$$
$$x^2 - 4x - 5 = 0$$

Substitute a = 1, b = -4, and c = -5 into the quadratic formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(-5)}}{2(1)}$$

$$x = \frac{4+6}{2} = 5$$
 or $x = \frac{4-6}{2} = -1$

The solutions are x = 5 and x = -1.

Additional Example 2:

Solve the equation $x^2 + 10x + 13 = 0$ by the quadratic formula.

Solution:

Substitute a = 1, b = 10, and c = 13 into the quadratic formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

= $\frac{-10 \pm \sqrt{(10)^2 - 4(1)(13)}}{2(1)}$
= $\frac{-10 \pm \sqrt{100 - 52}}{2}$
= $\frac{-10 \pm \sqrt{48}}{2}$
= $\frac{-10 \pm 4\sqrt{3}}{2}$
= $-5 \pm 2\sqrt{3}$

The solutions are $x = -5 - 2\sqrt{3}$ and $x = -5 + 2\sqrt{3}$.

Additional Example 3:

Solve the equation $2x^2 + 8x + 3 = 0$ by the quadratic formula.

Solution:

Substitute a = 2, b = 8, and c = 3 into the quadratic formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

= $\frac{-8 \pm \sqrt{8^2 - 4(2)(3)}}{2(2)}$
= $\frac{-8 \pm \sqrt{64 - 24}}{4}$
= $\frac{-8 \pm \sqrt{40}}{4}$
= $\frac{-8 \pm 2\sqrt{10}}{4}$
= $-2 \pm \frac{1}{2}\sqrt{10}$

The solutions are $x = -2 - \frac{1}{2}\sqrt{10}$ and $x = -2 + \frac{1}{2}\sqrt{10}$.

Additional Example 4:

The sum of the squares of two positive consecutive even integers is 1460. What is the smaller integer?

Solution:

Let x = the smaller integer Then x + 2 = the larger integer

Write an equation.

(square of the smaller integer)+(square of the larger integer)=1460

$$x^{2} + (x+2)^{2} = 1460$$

$$x^{2} + x^{2} + 4x + 4 = 1460$$

$$2x^{2} + 4x + 4 = 1460$$

$$2x^{2} + 4x + 4 - 1460 = 1460 - 1460$$

$$2x^{2} + 4x - 1456 = 0$$

Substitute a = 2, b = 4, and c = -1456 into the quadratic formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

= $\frac{-4 \pm \sqrt{4^2 - 4(2)(-1456)}}{2(2)}$
= $\frac{-4 \pm \sqrt{16 + 11648}}{4}$
= $\frac{-4 \pm \sqrt{11664}}{4}$
= $\frac{-4 \pm 108}{4}$

Determine the solutions to the quadratic equation $2x^2 + 4x - 1456 = 0$.

$$x = \frac{-4 - 108}{4} = \frac{-112}{4} = -28$$
 or $x = \frac{-4 + 108}{4} = \frac{104}{4} = 26$

We must rule out the solution x = -28 since the problem calls for positive integers.

Check the results.

x = 26 x + 2 = 28 $(26)^{2} = 676$ $(28)^{2} = 784$ $676 + 784 = 1460 \quad \checkmark$

Answer the problem in a complete sentence.

The smaller integer is 26.

The Discriminant

The Discriminant

The **discriminant** of the equation $ax^2 + bx + c = 0$ ($a \neq 0$) is given by

 $D=b^2-4ac$

If D > 0, then the equation $ax^2 + bx + c = 0$ has two distinct real solutions. If D = 0, then the equation $ax^2 + bx + c = 0$ has exactly one real solution. If D < 0, then the equation $ax^2 + bx + c = 0$ has no real solution.

Example Problem 1: Without solving the equation $x^2 - x - 6 = 0$, determine how many real solutions the equation has.

Solution:

Find the discriminant.

 $D = (-1)^2 - 4(1)(-6) = 1 + 24 = 25 > 0$. The equation has two distinct real solutions.

The figure below shows why the equation $x^2 - x - 6 = 0$ has two real solutions.

The two solutions to the equation $x^2 - x - 6 = 0$ are x = -2 and x = 3, which are the x-intercepts of the graph of the equation $y = x^2 - x - 6$.

Example Problem 2: Without solving the equation $4x^2 + 12x + 9 = 0$, determine how many real solutions the equation has.

Solution:

Find the discriminant.

 $D = (12)^2 - 4(4)(9) = 144 - 144 = 0$. The equation has exactly one real solution. The figure below shows why the equation $4x^2 + 12x + 9 = 0$ has one real solution.

The solution to the equation $4x^2 + 12x + 9 = 0$ is x = -1.5, which is the *x*-intercept of the graph of the equation $y = 4x^2 + 12x + 9$.

Example Problem 3: Without solving the equation $x^2 + x + 5 = 0$, determine how many real solutions the equation has.

Solution:

Find the discriminant.

 $D = 1^2 - 4(1)(5) = 1 - 20 = -19 < 0$. The equation has no real solution. The figure below shows why the equation $x^2 + x + 5 = 0$ has no real solution.

The equation $x^2 + x + 5 = 0$ has no real solution. The graph of the equation $y = x^2 + x + 5$ does not cross the x-axis. The graph has no x-intercepts.

Additional Example 1:

Use the discriminant to determine the number of real solutions to the equation

 $4x^2 = 5 - 3x$ (Do not solve the equation.)

Solution:

Rewrite the equation so that the RHS is equal to 0.

$$4x^{2} = 5 - 3x$$

$$4x^{2} + 3x = 5 - 3x + 3x$$

$$4x^{2} + 3x = 5$$

$$4x^{2} + 3x - 5 = 5 - 5$$

$$4x^{2} + 3x - 5 = 0$$

Substitute a = 4, b = 3, and c = -5 into the discriminant.

$$D = b^{2} - 4ac$$

= 3² - 4(4)(-5)
= 9 + 80
= 89

The equation has two distinct real solutions since D = 89 > 0.

Additional Example 2:

Use the discriminant to determine the number of real solutions to the equation $x^2 + 6x = -13$. (Do not solve the equation.)

Solution:

Rewrite the equation so that the RHS is equal to 0.

$$x^{2} + 6x = -13$$

 $x^{2} + 6x + 13 = -13 + 13$
 $x^{2} + 6x + 13 = 0$
Substitute $a = 1, b = 6$, and $c = 13$ into the discriminant.

$$D = b^{2} - 4ac$$

= $b^{2} - 4(1)(13)$
= $3b^{2} - 52$
= $-1b^{2}$

The equation has no real solutions since D = -16 < 0.

MATH 1310 College Algebra

Additional Example 3:

Use the discriminant to determine the number of real solutions to the equation

 $25x^2 + 60x = -36$. (Do not solve the equation.)

Solution:

Rewrite the equation so that the RHS is equal to 0. $25x^2 + 60x = -36$ $25x^2 + 60x + 36 = -36 + 36$ $25x^2 + 60x + 36 = 0$

Substitute a = 25, b = 60, and c = 36 into the discriminant. $D = b^2 - 4ac$ $= (60)^2 - 4(25)(36)$ = 3600 - 3600= 0

The equation has exactly one real solution since D = 0.

Additional Example 4:

Use the discriminant to find all values of k so that the equation $2kx^2 + 8x + k = 0$ has exactly one real solution.

Solution:

Substitute a = 2k, b = 8, and c = k into the discriminant. $D = b^2 - 4ac$ $= 8^2 - 4(2k)(k)$ $= 64 - 8k^2$

The equation has exactly one solution when D = 0. Set D = 0 and solve the resulting equation for k.

$$0 = 64 - 8k^{2}$$

$$0 + 8k^{2} = 64 - 8k^{2} + 8k^{2}$$

$$8k^{2} = 64$$

$$\frac{\cancel{8}k^{2}}{\cancel{8}} = \frac{64}{8}$$

$$k^{2} = 8$$

$$k = \pm\sqrt{8}$$

$$k = \pm\sqrt{2}$$

Solve the following equations by factoring.

- $1. \quad x^2 10x + 21 = 0$
- $2. \quad x^2 + 13x + 40 = 0$
- 3. x(x-2) = 35
- 4. x(x+8) = 20
- 5. $x^2 + 14x = 72$
- 6. $x^2 60 = 11x$
- 7. $2x^2 7x 15 = 0$
- 8. $3x^2 7x + 4 = 0$
- 9. $6x^2 + 17x = -12$
- **10.** $10x^2 7x = 6$
- **11.** $x^2 25 = 0$
- **12.** $x^2 49 = 0$
- **13.** $4x^2 9 = 0$
- **14.** $36x^2 25 = 0$

Solve the following equations by factoring. To simplify the process, remember to first factor out the Greatest Common Factor (GCF).

- **15.** $x^2 8x = 0$ **16.** $x^2 + 10x = 0$
- **17.** $-3x^2 + 21x = 0$
- **18.** $5x^2 30x = 0$
- **19.** $3x^2 12 = 0$
- **20.** $-7x^2 + 7 = 0$
- **21.** $-5x^2 15x + 90 = 0$
- **22.** $-4x^2 + 20x + 24 = 0$
- $23. \quad 80x^2 + 230x 30 = 0$
- **24.** $12x^2 75x + 18 = 0$

Find all real solutions of the following equations by completing the square.

25.
$$x^{2} + 8x + 12 = 0$$

26. $x^{2} - 6x - 40 = 0$
27. $x(x-10) = -18$
28. $x^{2} + 4x = -8$
29. $x^{2} + 14x + 60 = 0$
30. $x(x+12) = -28$
31. $x^{2} + 5x - 5 = 0$
32. $x^{2} - 7x + 2 = 0$
33. $3x^{2} - 12x - 5 = 0$
34. $2x^{2} + 12x = -3$
35. $-4x^{2} + 8x = -6$
36. $-5x^{2} - 40x - 78 = 0$
37. $3x^{2} - 5x = -2$
38. $8x^{2} - 6x - 5 = 0$

Find all real solutions of the following equations by using the quadratic formula.

39.
$$x^{2} + 5x + 2 = 0$$

40. $x^{2} - 7x + 3 = 0$
41. $x^{2} - 6x + 8 = 0$
42. $x^{2} - 2x = 15$
43. $x^{2} + 5x + 7 = 0$
44. $x^{2} - 8x = -16$
45. $x^{2} + 10x + 25 = 0$
46. $4x^{2} - 6x + 5 = 0$
47. $3x^{2} - 5x = -1$
48. $2x^{2} + 3x - 6 = 0$
49. $-2x^{2} - 6x - 3 = 0$
50. $-5x^{2} + 8x - 1 = 0$

MATH 1310 College Algebra

Find all real solutions of the following equations by using a method of your choice.

51.
$$x^2 - 10x + 16 = 0$$

52. $x^2 - 6x - 8 = 0$
53. $2x^2 - 4x = 5$
54. $3x^2 + 12x = 36$

Use the discriminant to determine the number of real solutions of each equation. (Do not solve the equation.)

55.
$$x^2 - 5x + 2 = 0$$

56.
$$2x^2 + 3x + 7 = 0$$

57.
$$x^2 + 4x = -4$$

58.
$$3x^2 - 6x = -3$$

59.
$$x^2 + 4x = -5$$

60.
$$3x^2 + 7x - 2 = 0$$

61.
$$x^2 - cx - d = 0$$
, where $d > 0$

62. $3x^2 - rx + t = 0$, where t < 0

Use the discriminant to find all values of k so that each of the following equations has exactly one solution.

- **63.** $kx^2 + 6x + 3k = 0$
- **64.** $4x^2 + kx + 49 = 0$

For each of the following problems:

- (a) Model the situation by writing appropriate equation(s).
- (b) Solve the equation(s) and then answer the question posed in the problem.
- **65.** The length of a rectangular frame is 5 cm longer than its width. If the area of the frame is 36 cm^2 , find the length and width of the frame.
- **66.** The height of a right triangle is 4 inches longer than its base. If its diagonal measures 20 inches, find the base and the height of the triangle.

- 67. The height of a triangle is 3 cm shorter than its base. If the area of the triangle is 90 cm^2 , find the base and height of the triangle.
- **68.** Find x if the area of the figure below is 26 cm^2 . (*Note that the figure may not be drawn to scale.*)

- **69.** Find two consecutive odd integers that have a product of 255.
- **70.** Find two numbers that have a sum of 39 and a product of 350.
- **71.** John can paint the fence in 3 hours less time than Chris. If it takes them $\frac{4}{5}$ of an hour when working together, how long does it take each of them to paint the fence individually?
- 72. Marie takes 1 hour more time to clean the house than Tina. If it takes them $1\frac{1}{5}$ hours when working together, how long would it take each of them to clean the house individually?