Chapter 2
 Solving Equations and Inequalities

Section 2.1: Linear Equations

Solving an Equation

Solving an Equation

Solving an Equation

To solve an equation in the variable x using the algebraic method is to use the rules of algebra to isolate the unknown x on one side of the equation.

To solve an equation in the variable x using the graphical method is to move all terms to one side of the equation and set those terms equal to y. Sketch the graph to find the values of x where $y=0$.

Algebraic Method: Solve the equation $-x-1=2 x+2$ by the algebraic method.
Isolate x on one side of the equation.

$$
\begin{aligned}
-x-1 & =2 x+2 \\
-3 x-1 & =2 \\
-3 x & =3 \\
x & =-1
\end{aligned}
$$

The solution is $x=-1$.

Graphical Method: Solve the equation $-x-1=2 x+2$ by the graphical method.
Move all terms to one side of the equation.

$$
\begin{aligned}
-x-1 & =2 x+2 \\
-1 & =3 x+2 \\
0 & =3 x+3
\end{aligned}
$$

Set $y=3 x+3$ and graph. The graph is a line with slope 3 and y-intercept 3 . Use the y intercept 3 to plot the point $(0,3)$. Use the slope $3=\frac{3}{1}$ to move 3 units up and 1 unit to the right to locate another point on the graph. Draw a line through the two points and extend the line until it crosses the x-axis.

Graphical Method (Another Approach): Solve the equation $-x-1=2 x+2$ by the graphical method.

Instead of moving all terms to one side of the equation, graph two equations:

$$
y=-x-1 \text { and } y=2 x+2
$$

The solution is the x-coordinate of the point of intersection of the two lines.

Example Problem: Solve the equation $x^{2}-4=0$ both algebraically and graphically.

Solution:

Algebraic Method: Isolate x on one side of the equation.

$$
\begin{aligned}
x^{2}-4 & =0 \\
x^{2} & =4 \\
x & = \pm \sqrt{4} \\
x & = \pm 2
\end{aligned}
$$

The solutions are $x=2$ and $x=-2$.

Graphical Method: Set $y=x^{2}-4$. The graph is a parabola. Make a table of values and sketch the graph.

Additional Example 1:

Solve the equation $6 x+3=4 x+33$

Solution:

$$
\begin{aligned}
6 x+3 & =4 x+33 \\
6 x+3-4 x & =4 x+33-4 x \\
2 x+3 & =33 \\
2 x+3-3 & =33-3 \\
2 x & =30 \\
\frac{2 x}{\not 2} & =\frac{30}{2} \\
x & =15
\end{aligned}
$$

Additional Example 2:

Solve the equation $2(x-3)+7=-4(x+1)+3$.

Solution:

$$
\begin{aligned}
2(x-3)+7 & =-4(x+1)+3 \\
2 x-6+7 & =-4 x-4+3 \\
2 x+1 & =-4 x-1 \\
2 x+1+4 x & =-4 x-1+4 x \\
6 x+1 & =-1 \\
6 x+1-1 & =-1-1 \\
6 x & =-2 \\
\frac{8 x}{6} & =\frac{-2}{6} \\
x & =-\frac{1}{3}
\end{aligned}
$$

Additional Example 3:

Solve the equation $2 x+\frac{x}{12}+\frac{x-3}{6}=x$.

Solution:

$$
2 x+\frac{x}{12}+\frac{x-3}{6}=x
$$

We first multiply both sides of the equation by 12 to clear the equation of fractions. Then solve as usual.

$$
\begin{aligned}
12(2 x)+\frac{12 x}{12}+\frac{12(x-3)}{6} & =12 x \\
24 x+x+2(x-3) & =12 x \\
24 x+x+2 x-6 & =12 x \\
27 x-6 & =12 x \\
27 x-6-12 x & =12 x-12 x \\
15 x-6 & =0 \\
15 x-6+6 & =0+6 \\
15 x & =6 \\
\frac{15 x}{15} & =\frac{6}{15} \\
x & =\frac{6}{15} \\
x & =\frac{2}{5}
\end{aligned}
$$

Additional Example 4:

Solve the equation $\frac{1}{2} x+1=3$ graphically.

Solution:

Move all terms to one side of the equation. To do this, subtract 3 from both sides.
$\frac{1}{2} x+1=3$
$\frac{1}{2} x-2=0$
Set the LHS equal to y.
$y=\frac{1}{2} x-2$
Sketch the graph of the equation $y=\frac{1}{2} x-2$. The graph is a line with slope $\frac{1}{2}$ and y-intercept -2 . Extend the line until it crosses the x-axis.

Look on the graph to find the value of x where $y=0$.
The solution is $x=4$.

Exercise Set 2.1: Linear Equations

Solve the following linear equations algebraically.

1. $-3 x+7=13$
2. $5 x-11=6$
3. $2 x+3=4 x-7$
4. $5 x+2=-4 x-6$
5. $3(x+2)+9=-5(x-8)-3$
6. $-4(x+3)-5=2(x-4)+3$
7. $3(2-5 x)=-4(7 x-3)$
8. $7+2(3-8 x)=4-6(1+5 x)$
9. $\frac{x}{5}=-7$
10. $\frac{x}{3}=10$
11. $\frac{2}{5} x-1=7$
12. $-\frac{3}{4} x-7=2$
13. $\frac{5}{3}(x-7)=\frac{2}{5} x+1$
14. $\frac{4}{9} x-12=-\frac{1}{6}(x-12)-3$
15. $2+\frac{2 x}{3}-\frac{x+5}{7}=3 x$
16. $x+\frac{x+7}{8}+\frac{5 x}{6}=\frac{-1}{12}$

Solve the following nonlinear equations algebraically. (Note: Even though these equations are not linear, some steps in the solution will contain a linear equation.)
17. $\frac{2}{5 x}+\frac{7}{4 x}=-3$
18. $-\frac{7}{6 x}+\frac{5}{4 x}=2$
19. $\frac{4}{x-5}-\frac{1}{3}=\frac{-8}{3 x-15}$
20. $\frac{7}{x+2}+\frac{4}{3 x+6}=-\frac{5}{3}$

Solve each of the following linear equations graphically, and then check your answer algebraically.
21. $2 x-5=3$
22. $-3 x-1=5$
23. $\frac{2}{3} x-3=1$
24. $-\frac{3}{5} x-1=-4$
25. $2 x+3=\frac{3}{4} x-2$
26. $\frac{2}{3} x-5=-\frac{1}{2} x+2$

