Section 1.3: Graphing Equations

Graphs

$>$ Intercepts of Graphs
$>$ Symmetry
Circles

Graphs

Graphs

The graph of an equation in the variables x and y is the set of all points (x, y) in the plane that satisfy the equation. A point (x, y) will satisfy an equation in x and y if the equation is true when the coordinates of the point are substituted into the equation.

Example Problem 1:

Sketch the graph of the equation $y=3 x-1$.

Solution:

Make a table of values and then graph the points from the table.

\boldsymbol{x}	\boldsymbol{y}	(x, y)
-2	$3(-2)-1=-7$	$(-2,-7)$
-1	$3(-1)-1=-4$	$(-1,-4)$
0	$3(0)-1=-1$	$(0,-1)$
1	$3(1)-1=2$	$(1,2)$
2	$3(2)-1=5$	$(2,5)$

	8 7 6 5 5 4 3 2 -1.	
		$(0,-1)$

Example Problem 2:

Sketch the graph of the equation $y=x^{2}-4$.

Solution:

Make a table of values and then graph the points from the table.

\boldsymbol{x}	\boldsymbol{y}	$(\boldsymbol{x}, \boldsymbol{y})$
-3	$(-3)^{2}-4=5$	$(-3,5)$
-2	$(-2)^{2}-4=0$	$(-2,0)$
-1	$(-1)^{2}-4=-3$	$(-1,-3)$
0	$0^{2}-4=-4$	$(0,-4)$
1	$1^{2}-4=-3$	$(1,-3)$
2	$2^{2}-4=0$	$(2,0)$
3	$3^{2}-4=5$	$(3,5)$

Example Problem 3:

Sketch the graph of the equation $y=|x-1|$.

Solution:

Make a table of values and then graph the points from the table.

\boldsymbol{x}	\boldsymbol{y}	$(\boldsymbol{x}, \boldsymbol{y})$
-1	$\|-1-1\|=2$	$(-1,2)$
0	$\|0-1\|=1$	$(0,1)$
1	$\|1-1\|=0$	$(1,0)$
2	$\|2-1\|=1$	$(2,1)$
3	$\|3-1\|=2$	$(3,2)$

Additional Example 1:

Determine which of the points $(1,-2),(0,-1),(3,3)$ are on the graph of the equation $1+x y=2 y+3$.

Solution:

To determine if the point $(1,-2)$ is on the graph of the equation $1+x y=2 y+3$, substitute $x=1$ and $y=-2$ into the equation.

$$
\begin{aligned}
& 1+x y=2 y+3 \\
& \stackrel{?}{=} \\
& 1+(1)(-2) 2(-2)+3 \\
& 1+(-2) \stackrel{?}{=}-4+3 \\
&-1=-1
\end{aligned}
$$

The point $(1,-2)$ lies on the graph of the equation $1+x y=2 y+3$ since for $x=1$ and $y=-2$, LHS $=-1=$ RHS

To determine if the point $(0,-1)$ is on the graph of the equation $1+x y=2 y+3$, substitute $x=0$ and $y=-1$ into the equation.

$$
\begin{gathered}
1+x y=2 y+3 \\
\stackrel{?}{1+(0)(-1)}=2(-1)+3 \\
\stackrel{?}{n} \\
1+0-2+3 \\
1=1
\end{gathered}
$$

The point $(0,-1)$ lies on the graph of the equation $1+x y=2 y+3$ since for $x=0$ and $y=-1$, LHS $=1=$ RHS .

To determine if the point $(3,3)$ is on the graph of the equation $1+x y=2 y+3$, substitute $x=3$ and $y=3$ into the equation.

$$
\begin{aligned}
& 1+x y=2 y+3 \\
& ? \\
& 1+(3)(3)=2(3)+3 \\
& 1+9 \stackrel{?}{=} 6+3 \\
& 10 \neq 9
\end{aligned}
$$

The point (3,3) does not lie on the graph of the equation $1+x y=2 y+3$ since for $x=3$ and $y=3, \mathrm{LHS}=10 \neq 9=\mathrm{RHS}$.

Additional Example 2:

Sketch the graph of the equation $y=3 x-2$.

Solution:

Make a table of values.

\boldsymbol{x}	$\boldsymbol{y}=\mathbf{3} \boldsymbol{x} \mathbf{- 2}$	$(\boldsymbol{x}, \boldsymbol{y})$
-2	$3(-2)-2=-8$	$(-2,-8)$
-1	$3(-1)-2=-5$	$(-1,-5)$
0	$3(0)-2=-2$	$(0,-2)$
1	$3(1)-2=1$	$(1,1)$
2	$3(2)-2=4$	$(2,4)$

Plot the points shown in the table of values.

$\begin{array}{rr} (-1,-5) & -2:(0,-2) \\ -4 \\ (-2,-8) & -6: \\ & -8: \\ & -10: \end{array}$

The points lie on a line. Sketch the graph by drawing a line through the plotted points.

Additional Example 3:

Sketch the graph of the equation $y=|x|+2$.
Solution:
Make a table of values.

\boldsymbol{x}	\boldsymbol{y}	(x, y)
-2	$\|-2\|+2=4$	$(-2,4)$
-1	$\|-1\|+2=3$	$(-1,3)$
0	$\|0\|+2=2$	$(0,2)$
1	$\|1\|+2=3$	$(1,3)$
2	$\|2\|+2=4$	$(2,4)$

Plot the points shown in the table of values.

Plot additional points if necessary to sketch the graph.

Additional Example 4:

Sketch the graph of the equation $y=4-x^{2}$.

Solution:

Make a table of values.

\boldsymbol{x}	\boldsymbol{y}	$(\boldsymbol{x}, \boldsymbol{y})$
-2	$4-(-2)^{2}=0$	$(-2,0)$
-1	$4-(-1)^{2}=3$	$(-1,3)$
0	$4-0^{2}=4$	$(0,4)$
1	$4-1^{2}=3$	$(1,3)$
2	$4-2^{2}=0$	$(2,0)$

Plot the points shown in the table of values.

Plot additional points if necessary to sketch the graph.

Intercepts of Graphs

Intercepts of Graphs

An x-intercept of a graph is the x-coordinate of a point where the graph intersects the x axis. To find the x-intercepts of a graph set $y=0$ into the equation of the graph and solve for x.

A y-intercept of a graph is the y-coordinate of a point where the graph intersect the y axis. To find the \boldsymbol{y}-intercepts of a graph set $x=0$ into the equation of the graph and solve for y.

The graph below has three x-intercepts: $-3,1$, and 2

The graph below has two y-intercepts: -2 and 2

Example Problem: Find the x - and y-intercepts of the graph of the equation $y=4-x^{2}$.

Solution:

Find the x-intercepts by substituting $y=0$ into the equation $y=4-x^{2}$ and solving for x.
$y=4-x^{2}$
$0=4-x^{2}$
$x^{2}=4$
$x= \pm \sqrt{4}$
$x= \pm 2$
The x-intercepts are ± 2.
Find the y-intercepts by substituting $x=0$ into the equation $y=4-x^{2}$ and solving for y.
$y=4-x^{2}$
$y=4-0^{2}$
$y=4$
The y-intercept is 4 .
The graph is shown below.

Additional Example 1:

Find the x-and y-intercepts of the graph of the equation $2 x-3 y=6$.

Solution:

To find the x-intercepts of the graph of the equation, substitute $y=0$ into the equation and solve for x.

$$
\begin{aligned}
2 x-3 y & =6 \\
2 x-3(0) & =6 \\
2 x & =6 \\
x & =3
\end{aligned}
$$

To find the y-intercepts of the graph of the equation, substitute $x=0$ into the equation and solve for y.

$$
\begin{aligned}
2 x-3 y & =6 \\
2(0)-3 y & =6 \\
-3 y & =6 \\
y & =-2
\end{aligned}
$$

The x-intercepts is 3 and the y-intercept is -2 . The graph of the equation $2 x-3 y=6$ is shown below.

Additional Example 2:

Find the x-and y-intercepts of the graph of the equation $x=1-y^{2}$

Solution:

To find the x-intercepts of the graph of the equation, substitute $y=0$ into the equation and solve for x.

$$
\begin{aligned}
& x=1-y^{2} \\
& x=1-0^{2} \\
& x=1
\end{aligned}
$$

To find the y-intercepts of the graph of the equation, substitute $x=0$ into the equation and solve for y.

$$
\begin{aligned}
x & =1-y^{2} \\
0 & =1-y^{2} \\
y^{2} & =1 \\
y & = \pm \sqrt{1} \\
y & = \pm 1
\end{aligned}
$$

The x-intercept is 1 and the y-intercepts are -1 and 1 . The graph of the equation $x=1-y^{2}$ is shown below.

Additional Example 3:

Find the x-and y-intercepts of the graph of the equation $y=\frac{1}{2} x^{2}-2$.

Solution:

To find the x-intercepts of the graph of the equation, substitute $y=0$ into the equation and solve for x.

$$
\begin{aligned}
y & =\frac{1}{2} x^{2}-2 \\
0 & =\frac{1}{2} x^{2}-2 \\
2 & =\frac{1}{2} x^{2} \\
4 & =x^{2} \\
\pm \sqrt{4} & =x \\
\pm 2 & =x
\end{aligned}
$$

To find the y-intercepts of the graph of the equation, substitute $x=0$ into the equation and solve for y.
$y=\frac{1}{2} x^{2}-2$
$y=\frac{1}{2} \cdot 0^{2}-2$
$y=0-2$
$y=-2$

The x-intercepts are 2 and -2 and the y-intercept is -2 . The graph of the equation $y=\frac{1}{2} x^{2}-2$ is shown below.

Symmetry

Symmetry

If the point $(x,-y)$ is on the graph of an equation whenever the point (x, y) is on the graph, then the graph is symmetric with respect to the \boldsymbol{x}-axis.

If the point $(-x, y)$ is on the graph of an equation whenever the point (x, y) is on the graph, then the graph is symmetric with respect to the \boldsymbol{y}-axis.

If the point $(-x,-y)$ is on the graph of an equation whenever the point (x, y) is on the graph, then the graph is symmetric with respect to the origin.

The graph below is symmetric with respect to the x-axis. The part of the graph above the x-axis is the mirror image of the part below the x-axis.

The graph below is symmetric with respect to the y-axis. The part of the graph to the left of the y-axis is the mirror image of the part to the right of the y-axis.

The graph below is symmetric with respect to the origin

Example Problem:

Test the equation $y=x^{4}+1$ for symmetry with respect to the x-axis, the y-axis and the origin.

Solution:

To check for symmetry with respect to the x-axis, replace y by $-y$ in the equation.

$$
\begin{aligned}
y & =x^{4}+1 \\
-y & =x^{4}+1
\end{aligned}
$$

The graph is not symmetric with respect to the x-axis since the equation $-y=x^{4}+1$ is not the same as the original equation $y=x^{4}+1$.

To check for symmetry with respect to the y-axis, replace x by $-x$ in the equation.
$y=x^{4}+1$
$y=(-x)^{4}+1$
$y=x^{4}+1$
The graph is symmetric with respect to the y-axis since the original equation is unchanged.

To check for symmetry with respect to the origin, replace x by $-x$ and y by $-y$ in the equation.

$$
\begin{aligned}
y & =x^{4}+1 \\
-y & =(-x)^{4}+1 \\
-y & =x^{4}+1
\end{aligned}
$$

The graph is not symmetric with respect to the origin since the equation $-y=x^{4}+1$ is not the same as the original equation $y=x^{4}+1$.

The graph of the equation $y=x^{4}+1$ is shown below.

Additional Example 1:

In the following problem, only part of the graph is given. Complete the graph using the given symmetry.

Solution:

Points on the graph are reflections of each other about the x-axis. The part of the graph below the x-axis is the mirror image of the part above the x-axis.

Additional Example 2:

In the following problem, only part of the graph is given. Complete the graph using the given symmetry.

Solution:

Points on the graph are reflections of each other about the y-axis. The part of the graph to the left of the y-axis is the mirror image of the part to the right of the y-axis.

Additional Example 3:

Test the equation $x^{2}+y=5$ for symmetry with respect to the x-axis, the y-axis, and the origin.

Solution:

To check for symmetry with respect to the x-axis, replace y by $-y$ in the equation.

$$
\begin{aligned}
x^{2}+y & =5 \\
x^{2}+(-y) & =5 \\
x^{2}-y & =5
\end{aligned}
$$

The graph is not symmetric with respect to the x-axis since the equation $x^{2}-y=5$
is not the same as the original equation $x^{2}+y=5$.

To check for symmetry with respect to the y-axis, replace x by $-x$ in the equation.

$$
\begin{aligned}
x^{2}+y & =5 \\
(-x)^{2}+y & =5 \\
x^{2}+y & =5
\end{aligned}
$$

The graph is symmetric with respect to the y-axis since the original equation is unchanged.

To check for symmetry with respect to the origin, replace x by $-x$ and y by $-y$ in the equation

$$
\begin{array}{r}
x^{2}+y=5 \\
(-x)^{2}+(-y)=5 \\
x^{2}-y=5
\end{array}
$$

The graph is not symmetric with respect to the origin since the equation $x^{2}-y=5$ is not the same as the original equation $x^{2}+y=5$.

The graph of the equation $x^{2}+y=5$ is shown below

Additional Example 4:

Test the equation $y=x^{3}+x$ for symmetry with respect to the x-axis, the y-axis, and the origin.

Solution:

To check for symmetry with respect to the x-axis, replace y by $-y$ in the equation.

$$
\begin{array}{r}
y=x^{3}+x \\
-y=x^{3}+x
\end{array}
$$

The graph is not symmetric with respect to the x-axis since the equation $-y=x^{3}+x$ is not the same as the original equation $y=x^{3}+x$.

To check for symmetry with respect to the y-axis, replace x by $-x$ in the equation.
$y=x^{3}+x$
$y=(-x)^{3}+(-x)$
$y=-x^{3}-x$

The graph is not symmetric with respect to the y-axis since the equation $y=-x^{3}-x$ is not the same as the original equation $y=x^{3}+x$.

To check for symmetry with respect to the origin, replace x by $-x$ and y by $-y$ in the equation.

$$
\begin{aligned}
y & =x^{3}+x \\
-y & =(-x)^{3}+(-x) \\
-y & =-x^{3}-x \\
y & =x^{3}+x
\end{aligned}
$$

The graph is symmetric with respect to the origin since the original equation is unch anged.

The graph of the equation $y=x^{3}+x$ is shown below

Circles

Circles

A circle is the set of all points $P(x, y)$ in the planes that are at a fixed distance r from a fixed point $C(h, k)$. The number r is called the radius of the circle. The point $C(h, k)$ is called the center of the circle.

The equation of a circle in standard form is given by

$$
(x-h)^{2}+(y-k)^{2}=r^{2} .
$$

Example Problem l: Find an equation of the circle with radius 2 and center ($-1,3$). Sketch the graph.

Solution:

Substitute $r=2, h=-1$, and $k=3$ into the standard form of the equation of a circle.

$$
\begin{aligned}
& (x-(-1))^{2}+(y-3)^{2}=2^{2} \\
& (x+1)^{2}+(y-3)^{2}=4
\end{aligned}
$$

Example Problem 2: The equation $x^{2}+y^{2}-6 x+10 y-2=0$ represents a circle. Find its center and radius.

Solution:

Group the x terms and y terms.
$\left(x^{2}-6 x\right)+\left(y^{2}+10 y\right)=2$
Complete the square for $x^{2}-6 x$ by adding $\left(\frac{1}{2}(-6)\right)^{2}=(-3)^{2}=9$.
Complete the square for $y^{2}+10 y$ by adding $\left(\frac{1}{2} \cdot 10\right)^{2}=5^{2}=25$.
$\left(x^{2}-6 x+9\right)+\left(y^{2}+10 y+25\right)=2+9+25$
$(x-3)^{2}+(y+5)^{2}=36$
The center is $(3,-5)$ and the radius is 6 .

Additional Example 1:

The graph of the equation $(x+1)^{2}+(y-1)^{2}=4$ is a circle. Identify the center and radius and sketch the graph.

Solution:

The equation of a circle in standard form is given by $(x-h)^{2}+(y-k)^{2}=r^{2}$, where the center is the point (h, k) and the radius is r.
Rewrite the given equation in standard form.

$$
\begin{aligned}
(x+1)^{2}+(y-1)^{2} & =4 \\
(x-(-1))^{2}+(y-1)^{2} & =2^{2}
\end{aligned}
$$

We see that $h=-1, k=1$, and $r=2$. Thus, the center is the point $(-1,1)$ and the radius is 2 .
To sketch the graph, begin by plotting the points $(-3,1),(-1,3),(1,1)$, and $(-1,-1)$. These points lie on the circle since the distance between these points and the point $(-1,1)$, the center of the circle, is 2 .

The graph is shown below.

Additional Example 2:

Write an equation of the circle with center $(-3,-2)$ and radius 4 .

Solution:

The equation of a circle in standard form is given by $(x-h)^{2}+(y-k)^{2}=r^{2}$, where (h, k) is the center and r is the radius.

To find an equation of the circle with center $(-3,-2)$ and radius 4 , substitute $h=-3, k=-2$, and $r=4$ into the standard form.

$$
\begin{aligned}
(x-h)^{2}+(y-k)^{2} & =r^{2} \\
(x-(-3))^{2}+(y-(-2))^{2} & =4^{2} \\
(x+3)^{2}+(y+2)^{2} & =16
\end{aligned}
$$

Additional Example 3:

Find an equation of the circle that satisfies the conditions that the endpoints of a diameter are $(-6,7)$ and $(4,5)$.

Solution:

The center of the circle is the midpoint of the line segment connecting the points $(-6,7)$ and $(4,5)$.

To find the center of the circle, substitute $x_{1}=-6, y_{1}=7, x_{2}=4$, and $y_{2}=5$ into the midpoint formula.

$$
\begin{aligned}
\text { Center } & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{-6+4}{2}, \frac{7+5}{2}\right) \\
& =\left(\frac{-2}{2}, \frac{12}{2}\right) \\
& =(-1,6)
\end{aligned}
$$

The radius of the circle is one-half the distance between the points $(-6,7)$ and (4,5).

To find the radius substitute $x_{1}=-6, y_{1}=7, x_{2}=4$, and $y_{2}=5$ into the distance formula and multiply the result by $\frac{1}{2}$.

$$
\begin{aligned}
r & =\frac{1}{2} \cdot \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\frac{1}{2} \cdot \sqrt{(4-(-6))^{2}+(5-7)^{2}} \\
& =\frac{1}{2} \cdot \sqrt{(4+6)^{2}+(-2)^{2}} \\
& =\frac{1}{2} \cdot \sqrt{(10)^{2}+4} \\
& =\frac{1}{2} \cdot \sqrt{100+4} \\
& =\frac{1}{2} \cdot \sqrt{104} \\
& =\frac{1}{2} \cdot 2 \sqrt{26} \\
& =\sqrt{26}
\end{aligned}
$$

The center of the circle is the point $(-1,6)$ and the radius is $\sqrt{26}$. Substitute $h=-1, k=6$, and $r=\sqrt{26}$ into the standard form for the equation of a circle.

$$
\begin{gathered}
(x-h)^{2}+(y-k)^{2}=r^{2} \\
(x-(-1))^{2}+(y-6)^{2}=(\sqrt{26})^{2} \\
(x+1)^{2}+(y-6)^{2}=26
\end{gathered}
$$

Additional Example 4:

The equation $x^{2}+y^{2}+6 x-2 y-1=0$ represents a circle. Put the equation in standard form and identify the center and the radius.

Solution:

Group the x-terms and the y-terms
$\left(x^{2}+6 x\right)+\left(y^{2}-2 y\right)=1$
Complete the square for $x^{2}+6 x$ by adding $\left[\frac{1}{2} \cdot 6\right]^{2}=3^{2}=9$.
Complete the square for $y^{2}-2 y$ by adding $\left[\frac{1}{2}(-2)\right]^{2}=(-1)^{2}=1$.

$$
\begin{gathered}
\left(x^{2}+6 x+9\right)+\left(y^{2}-2 y+1\right)=1+9+1 \\
(x+3)^{2}+(y-1)^{2}=11
\end{gathered}
$$

Put the equation in the form $(x-h)^{2}+(y-b)^{2}=r^{2}$ to find the center (h, k) and the radius r.
$(x-(-3))^{2}+(y-1)^{2}=(\sqrt{11})^{2}$
The center of the circle is $(-3,1)$ and the radius is $\sqrt{11}$.

Exercise Set 1.3: Graphing Equations

Determine which of the following points are on the graph of the given equation.

1. $x+y=5 ;(1,4),(3,-7),\left(\frac{3}{2}, \frac{7}{2}\right)$
2. $2 x-y=7 ;(0,-5),(-3,-13),\left(\frac{5}{2},-2\right)$
3. $x y-x+3 y=7 ;(2,-5),(-1,3),\left(6, \frac{2}{3}\right)$
4. $x^{2}-y^{2}=x+y ; \quad(3,2),(5,4),(-7,-6)$
5. $x^{2} y(3+2 x y)=x+5 ;(1,1),(-2,3),(-5,0)$
6. $-2 y\left(x^{2}-x y\right)=40 ;(4,-1),(-3,-2),(3,-5)$

Sketch the graphs of the following equations by plotting points.
7. $y=2 x-5$
8. $y=-3 x+4$
9. $y=|x+3|$
10. $y=|x|-5$
11. $y=\sqrt{x}$
12. $y=x^{2}+1$
13. $y=3-x^{2}$
14. $y=x^{3}$
15. $y=\frac{12}{x}$
16. $y=-\frac{8}{x}$

Find the x - and y-intercepts of the graph of each of the following equations.
17. $y=4 x-5$
18. $y=-3 x-7$
19. $5 x+2 y=20$
20. $3 x-4 y=-24$
21. $y=x^{2}-16$
22. $x=25-y^{2}$
23. $y=\frac{7}{x}$
24. $x y=6$
25. $y=x^{2}+9$
26. $y=\sqrt{x+3}$
27. $x^{2}+y^{2}=25$
28. $4 x^{2}-y^{2}=9$
29. $x^{2}+2 x y+3 y=12$
30. $4 x^{2}-5 x y+3 y=36$

In the following questions, only part of the graph is given. Complete each graph using the given symmetry.
31. x-axis
32. y-axis

33. origin
34. x-axis

Exercise Set 1.3: Graphing Equations

Test the following equations for symmetry with respect to the x-axis, the y-axis, and the origin.
35. $y=x^{2}+x^{4}$
36. $x=y^{2}+y^{4}$
37. $y=5 x^{3}$
38. $y=\frac{10}{x}$
39. $5 x+x^{2} y^{4}=y^{2}$
40. $x^{2}+y^{2}=x y$
41. $y=3 x^{2}+5 x$
42. $x^{2}+y^{2}=25 y$
43. $|x|+3 y=5$
44. $3 x-7|y|=4$

For each of the following equations:
(a) Test the equation for symmetry.
(b) Find and plot the intercepts.
(c) Plot a few intermediate points in order to complete the graph. (Keep symmetry in mind to minimize the length of this step.)
45. $y=x^{2}-4$
46. $y=5-x^{2}$
47. $y=\sqrt{9-x^{2}}$
48. $y=-\sqrt{25-x^{2}}$
49. $y=x^{3}-4 x$
50. $y=|x|+3$

The following equations represent circles. Identify the center and radius of each circle.
51. $(x-3)^{2}+(y+5)^{2}=49$
52. $(x+7)^{2}+(y-1)^{2}=81$
53. $x^{2}+(y-6)^{2}=28$
54. $(x+8)^{2}+y^{2}=23$

Exercise Set 1.3: Graphing Equations

Show that the following equations represent circles by writing them in standard form:

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Then identify the center and radius of the circle.
71. $x^{2}+y^{2}+4 x-12 y-9=0$
72. $x^{2}+y^{2}-2 x+8 y-20=0$
73. $x^{2}+y^{2}-10 y+1=0$
74. $x^{2}+y^{2}-14 x+39=0$
75. $x^{2}+y^{2}+x-6 y+7=0$
76. $x^{2}+y^{2}-\frac{1}{3} x+\frac{1}{3} y-\frac{7}{36}=0$

