Changes with the next revease

Since GoeGebra is preparing to release a new version it is worthwhile to look at the new version, 3.2, that
should come out shortly. The menus are slightly modified.

806 CeoGebra

File Edit View Options Tools Window Help

] .~ NclEP

N

Move
—_— '%'_ Drag or select objects (Esc)

@G

B © QAN s
o == SN RG] NSl Pt | N S
o ')/- : “““l i 4 apc |
A4l Ol
/ !O P - / '/-’: azh .
.’; ’\\Q .3 .. O

k
:,’.(6 f} i
./ -
Iy
< |
Fa 3 2 1) 1 2 3) g 5 7 1

1
2
-3

& (nput:) [1 'y 2 "Command ...

[k Rotate around point
L]

[}S Record to spreadsheet

>< Perpendicular bisector

/\: Angle bisector RQ »

Tangents
O Tang

.Q Polar or diameter line - : =

& Locus f Segment with given length from point

/’/, Parallel line ’ Check box to show and hide objects

ABC Insert text

] Insert image

? . -
a=p Relation between two objects

Line through two points

/ Segment between two points

@ Circle with center and radius
./-_\.
*~ Compass

>~
O Circle through three points

p Semicircle through two points

‘/) Circumcircular arc through three points

- - T /'/ Ray through two points
@ Circle with center through point

.') Circular arc with center through two points \®_ Pparabola

Q Circular sector with center through two points

0%» Move drawing pad
Q Circumcircular sector through three points

/ Vector between two points

-/; Vector from point

Ellipse

.\: Hyperbola

O Conic through five points

o
x Mirror object at line

L]
.0 Mirror object at point
« _ Mirror point at circle
. - .
Joe Rotate object around point by angle

'.
‘v Translate object by vector

.. ® Dilate object from point by factor

® Zoom in
§_
&, Zoom out
L]
.Qc' Angle with given size

JQ Show / hide object
fm “ Distance or length

cné Area

A /A Show / hide label

<! Copy visual style

/ Slope

// Delete object

New commands in the new version

Statistics

* Covariance[<list]l of numbers>, <list2 of numbers>]
Calculates the covariance using the elements of both lists

* Covariance[<list of points> |
Calculates the covariance using the x- and y-coordinates of the points

* InverseNormal[<mean>, <standard deviation>, <number>]
Calculates the function inversephi(x) * (standard deviation) + (mean)
where inversephi(x) is the inverse of the pdf for N(0,1)

(pdf = probability density function, ie a non-negative function with area 1)

* Mean|[<list> |
Calculates the mean of the list elements

* MeanX][<list of points> |
Mean of the x coordinates of the points in the list

* MeanY| <list of points> |
Mean of the y coordinates of the points in the list

* Median[<list>]

Determines the median of the list elements

* Mode[<list>]

Determines the mode(s) of the list elements
Mode[{1,2,3,4}] returns {}
Mode[{1,1,1,2,3,4}] returns {1}
Mode[{1,1,2,2,3,3,4}] returns {1,2,3}

* Normal[<mean>, <standard deviation>, <number>]
Calculates the function (phi(x) - mean) / (standard deviation)
where phi(x) is the pdf for N(0,1)

(pdf = probability density function, ie a non-negative function with area 1)

* QI <list>]

Determines the lower quartile of the list elements

* Q3 <list>]

Determines the upper quartile of the list elements

* RandomBetween|[<min>, <max> |
Generates a random integer between min and max (inclusive)
The numbers min and max need to be integers.

* RandomBinomial[<number n>, <number p>]

Generates a random number from a binomial distribution

* RandomNormal[<mean>, <standard deviation>]
Generates a random number from a normal distribution

* RandomPoisson[<mean>]

Generates a random number from a poisson distribution

* SD[<list>]

Calculates the standard deviation of list elements
* SigmaXX] <list of numbers> |
* SigmaXX] <list of points>]

Calculates the sum of squares (of list elements, or x coordinates of points)
* SigmaXY][<list of x-coordinates> , <list of y-coordinates>]
* SigmaXY][<list of points>]
Calculates the sum of (the product of the x and y coordinates).
For bivariate data, SigmaXY works out sum of (x coord times y coord)
* SigmaY Y[<list of points>]
Calculates the sum of squares of y coords
For bivariate data, SigmaY'Y = sum of (y coord *2)
* Sxx[<list of numbers>, <list of numbers>]
Calculates the statistic sigma(x”2) - sigma(x) * sigma(x)/n
* Sxx|[<list of points>]
Calculates the statistic sigma(x”2) - sigma(x) * sigma(x)/n
* Sxy[<list of numbers>, <list of numbers>]
Calculates the statistic sigma(xy) - sigma(x) * sigma(y)/n
* Sxyl[<list of points>]
Calculates the statistic sigma(xy) - sigma(x) * sigma(y)/n
* Syyl[<list of numbers>, <list of numbers>]
Calculates the statistic sigma(y”2) - sigma(y) * sigma(y)/n
* Syy] <list of points>]
Calculates the statistic sigma(y”2) - sigma(y) * sigma(y)/n
* Take[<list>, <number m>, <number n>]
Returns a list containing the elements from positions m to n of the list.
* Variance[<list>]
Calculates the variance of list elements

Working With Lists
* Append| <list>, <object> |
Appends the object to the list
e.g. Append[{l, 2, 3}, (5, 5)] gives you {1, 2, 3, (5, 5)}
* Append[<object>, <list> |
Appends the list to the object
e.g. Append[(5, 5), {1, 2, 3}] gives you {(5, 5), 1,2, 3}
* CountIf] <condition>, <list>]
Counts the number of elements in the list satisfying the condition
e.g. Countlf] x <3, {1,2,3,4,5}]
e.g. Countlf] x<3, A1:A10] where A1:A10 is a range of cells in the spreadsheet
* First[<list>, n]
Returns a list containing just the first n elements of the list.
* Insert[<list 1>, <list 2>, <position>]
* Intersection[<list 1>, <list 2>]
Gives you all elements that are part of both lists
* Join[<list 1>, <list 2>, ...]
Joins the two (or more) lists (no re-ordering of elements, keeps all elements even if they
are the same)
e.g. Join[{1,2,3}, {4,5,6}]
* Join[<list of lists> |

Joins the sub-lists into one longer list (no re-ordering of elements, keeps all elements
even if they are the same)
e.g. Join[{ {1,2,3}, {4,5,6}, {7,8,9} }]
* Keeplf[<condition>, <list>]
e.g. Keeplf] x<3, {1,2,3,4,1,5,6}] returns {1,2,1}
* Last[<list>, <number n>]
Returns a list containing just the last n elements of the list.
* Product| <list>]
Calculates the product of all list elements
* RemoveUndefined[<list> |
Removes undefined objects from a list
e.g. RemoveUndefined[Sequence[(-1)™, 1, -3, -1, 0.5]]
* Reverse[<list> |
Reverses the order of a list
* Sort[<list>]
Sorts a list of numbers, text objects or points (sorts points by x-coordinate)
e.g. Sort[{3, 2, 1}]
e.g. Sort[{"pears", "apples", "figs"}]
e.g. listl = Sort[{A, B, C}] list2 = Sequence[Segment[Element[list1, i], Element[list1, 1
+ 111, 1, 1, Length[list1] - 1]
* Sum| <list> |
Calculates the sum of all list elements
Works for numbers, points & vectors, text and functions
e.g. Sum[{1,2,3}] gives youa =6
e.g. Sum[{x"2,x"3}] gives you f(x)=x"2 + x"3
e.g. Sum[Sequence][i,i,1,100]] gives you a = 5050
e.g. Sum[Sequence[l /(2 k- 1) sin((2 k- 1) x), k, 1, 20]]
e.g. Sum[{(1, 2), (2, 3)}] gives you point A = (3, 5)
e.g. Sum[{(1, 2), 3}] gives you point B = (4, 2)
e.g. Sum[{"a","b","c"}] gives "abc"
* Sum|[<list>, <number n>]
Calculates the sum of the first n list elements
Works for numbers, points & vectors, text and functions
e.g. Sum[{1, 2, 3,4, 5, 6}, 4] gives you 10
* Union[<list1>, <list2>]
Joins lists and removes items that appear multiple times

Plotting Data

* BarChart[<start>, <end>, <list of heights>]
e.g. BarChart[10, 20, {1,2,3,4,5}]
gives you a bar chart with five bars of specified height in the interval [10, 20]

* BarChart[<start>, <end>, <expression>, <variable>, <from>, <to> |

* BarChart[<start>, <end>, <expression>, <variable>, <from>, <to>, <step> |
e.g.p=0.1

q=0.9

n=10
BarChart[-0.5, n + 0.5, BinomialCoefficient[n,k]*p~k*q"(n-k), k, 0, n]

* BarChart[<raw data>, <width>]
e.g. BarChart[{1,1,1,2,2,2,2.2.33,3,5,5,5,5}, 1]

* BarChart[<data>, <frequencies>]
<data> must be a list where the numbers go up by a constant amount
e.g. BarChart[{10,11,12,13,14}, {5,8,12,0,1}]
e.g. BarChart[{5, 6, 7, 8, 9}, {1, 0, 12, 43, 3}]
e.g. BarChart[{0.3, 0.4, 0.5, 0.6}, {12, 33, 13, 4}]

* BarChart[<data>, <frequencies>, <width> |
<data> must be a list where the numbers go up by a constant amount
e.g. leaves gaps between bars: BarChart[{10,11,12,13,14}, {5,8,12,0,1}, 0.5]
e.g. line graph: BarChart[{10,11,12,13,14}, {5,8,12,0,1}, 0]

* BoxPlot[<yOffset>, <yScale>, <raw data> |
e.g. BoxPlot[0, 1, {2,2,3,4,5,5,6,7,7,8,8,8,9}]

* BoxPlot[<yOffset>, <yScale>, <start>, <Q1>, <median>, <Q3>, <end> |
e.g. BoxPlot[0, 1, 2, 3,4, 5, 6]

* Histogram[<class boundaries>, <heights>]
e.g. Histogram[{1,2,4,8}, {3,5,7}]

* Histogram[<class boundaries>, <raw data> |
e.g. Histogram[{1,1.5,2,4},{1.0,1.1,1.1,1.2,1.7,1.7,1.8,2.2,2.5,4.0}]

Curve Fitting
* FitExp[<list of points> |
Calculates the exponential regression curve
* FitLine[<list of points>]
Calculates the y on x regression line of the points.
* FitLineX][<list of points>]
Calculates the x on y regression line of the points.
* FitLog[<list of points> |
Calculates the logarithmic regression curve
* FitPoly[<list of points>, <number n> |
Calculates the regression polynomial of degree n
* FitPow][<list of points> |
Calculates the regression curve in the form a x”b.
All points used need to be in the first quadrant of the coordinate system.
* PMCC]J <list of x-coordinates™> , <list of y-coordinates>]
* PMCC]J <list of points>]
Product moment correlation coefficient
* Polynomial[<list of points>] (in 3.0, undocumented)
Interpolation polynomial of degree (n-1) through n points.

Number Theory

* BinomialCoefficient] <Number n>, <Number r>]

Calculates the binomial coefficient "n choose r".
* GCD[<number a>, <number b>]
* GCDJ <list> |
Greatest common divisor
(UK _English HCF Highest common factor)
* LCM[<number a>, <number b> |
* LCM[<list>]
Lowest common multiple (UK) of two numbers a and b or elements of the list
Least common multpile (US)

Calculus and Pre-calculus
* Ellipse[<point A>, <point B>, <point C>]
Draws an ellipse with foci A and B passing through C
* Expand[<function>]
Multiplies out the brackets and simplifies
e.g. Expand[(x+3)(x-4)] gives you f(x) = x"2 - x - 12
e.g. Expand[x*3 + x*3] gives f(x) =2 x"3
* Factor[<polynomial>]
Factors the polynomial
e.g. Factor[x"2+x-6] gives you f(x) = (x-2)(x+3)
* Hyperbola[<point A>, <point B>, <point C>]
Draws a hyperbola with foci A and B passing through C
* Simplify[<function>]
e.g. Simplify[x + x + x]
* TrapezoidalSum[<function>, <start>, <end>, <# steps> |
Works the same way as UpperSum|[] and LowerSum[]
e.g. TrapezoidalSum[x*2, 1, 2, 5]

Technical Controls
* AxisStepX[]
* AxisStep Y[]
Return the current step for the x-axis or y-axis respectively.
Together with the Corner[n] and Sequence[] commands, these allow you to create
custom axes.
* AxisStepX[]
* AxisStepY[]
Return the current step for the x-axis or y-axis respectively.
Together with the Corner[n] and Sequence[] commands, these allow you to create
custom axes.
* TableText[<listl>, <list2>, <list3>, ...]
Creates a text that contains the table of list objects.
* TableText[<listl>, <list2>, <list3>, ..., <orientation>]
The optional text controls the orientation and alignment of the table.
Possible values: "v1", "vc", "vr", "v", "h", "hl", "hc", "hr"

v = vertical, i.e. lists are columns

h = horizontal, i.e. lists are rows

1 = left aligned

r = right aligned

¢ = centered

Default is "v1"

e.g. TableText[{ x*2, x"3, x4 }] 1 column, left aligned

e.g. TableText[Sequence[1”2, 1, 1, 10]] 1 column, left aligned
e.g. TableText[{1,2,3,4},{1,4,9,16},"v"] 2 columns, left aligned
e.g. TableText[{1,2,3,4},{1,4,9,16},"h"] 2 rows, left aligned
e.g. TableText[{11.2,123.1,32423.9,"234.0"},"r"] 1 column right aligned

* Text[<object>]

* Text[<object>, <substitute values for variables>]

* Text[<object>, <point>]

* Text[<object>, <point>, <substitute values for variables> |
Returns the formula for the object as a text object, with or without variables substituted
Point defines where the text will be drawn
eg.a=2

c=a"2

Text[c] and Text[c, true] both return "4"

Text[c, false] returns "a"2"

Text["hello", (2,3)] draws the text at (2,3)

