Changes with the next revease

Since GoeGebra is preparing to release a new version it is worthwhile to look at the new version, 3.2, that
should come out shortly. The menus are slightly modified.
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New commands in the new version

Statistics

* Covariance[ <list]l of numbers>, <list2 of numbers> ]
Calculates the covariance using the elements of both lists

* Covariance[ <list of points> |
Calculates the covariance using the x- and y-coordinates of the points

* InverseNormal[ <mean>, <standard deviation>, <number> ]
Calculates the function inversephi(x) * ( standard deviation ) + ( mean )
where inversephi(x) is the inverse of the pdf for N(0,1)

(pdf = probability density function, ie a non-negative function with area 1)

* Mean|[ <list> |
Calculates the mean of the list elements

* MeanX][ <list of points> |
Mean of the x coordinates of the points in the list

* MeanY| <list of points> |
Mean of the y coordinates of the points in the list

* Median[ <list> ]

Determines the median of the list elements

* Mode[ <list> ]

Determines the mode(s) of the list elements
Mode[{1,2,3,4}] returns {}
Mode[{1,1,1,2,3,4}] returns {1}
Mode[{1,1,2,2,3,3,4}] returns {1,2,3}

* Normal[ <mean>, <standard deviation>, <number> ]
Calculates the function ( phi(x) - mean ) / (standard deviation)
where phi(x) is the pdf for N(0,1)

(pdf = probability density function, ie a non-negative function with area 1)

* QI <list> ]

Determines the lower quartile of the list elements

* Q3 <list> ]

Determines the upper quartile of the list elements

* RandomBetween|[ <min>, <max> |
Generates a random integer between min and max (inclusive)
The numbers min and max need to be integers.

* RandomBinomial[ <number n>, <number p> ]

Generates a random number from a binomial distribution

* RandomNormal[ <mean>, <standard deviation>]
Generates a random number from a normal distribution

* RandomPoisson[ <mean> ]

Generates a random number from a poisson distribution

* SD[ <list> ]

Calculates the standard deviation of list elements
* SigmaXX] <list of numbers> |
* SigmaXX] <list of points> ]



Calculates the sum of squares (of list elements, or x coordinates of points)
* SigmaXY][ <list of x-coordinates> , <list of y-coordinates> ]
* SigmaXY][ <list of points> ]
Calculates the sum of (the product of the x and y coordinates).
For bivariate data, SigmaXY works out sum of (x coord times y coord)
* SigmaY Y[ <list of points> ]
Calculates the sum of squares of y coords
For bivariate data, SigmaY'Y = sum of (y coord *2)
* Sxx[ <list of numbers>, <list of numbers> ]
Calculates the statistic sigma(x”2) - sigma(x) * sigma(x)/n
* Sxx|[ <list of points> ]
Calculates the statistic sigma(x”2) - sigma(x) * sigma(x)/n
* Sxy[ <list of numbers>, <list of numbers> ]
Calculates the statistic sigma(xy) - sigma(x) * sigma(y)/n
* Sxyl[ <list of points> ]
Calculates the statistic sigma(xy) - sigma(x) * sigma(y)/n
* Syyl[ <list of numbers>, <list of numbers> ]
Calculates the statistic sigma(y”2) - sigma(y) * sigma(y)/n
* Syy] <list of points> ]
Calculates the statistic sigma(y”2) - sigma(y) * sigma(y)/n
* Take[ <list>, <number m>, <number n> ]
Returns a list containing the elements from positions m to n of the list.
* Variance[ <list> ]
Calculates the variance of list elements

Working With Lists
* Append| <list>, <object> |
Appends the object to the list
e.g. Append[{l, 2, 3}, (5, 5)] gives you {1, 2, 3, (5, 5)}
* Append[ <object>, <list> |
Appends the list to the object
e.g. Append[(5, 5), {1, 2, 3}] gives you {(5, 5), 1,2, 3}
* CountIf] <condition>, <list> ]
Counts the number of elements in the list satisfying the condition
e.g. Countlf] x <3, {1,2,3,4,5} ]
e.g. Countlf] x<3, A1:A10] where A1:A10 is a range of cells in the spreadsheet
* First[ <list>, n ]
Returns a list containing just the first n elements of the list.
* Insert[ <list 1>, <list 2>, <position> ]
* Intersection[ <list 1>, <list 2> ]
Gives you all elements that are part of both lists
* Join[ <list 1>, <list 2>, ...]
Joins the two (or more) lists (no re-ordering of elements, keeps all elements even if they
are the same)
e.g. Join[ {1,2,3}, {4,5,6} ]
* Join[ <list of lists> |



Joins the sub-lists into one longer list (no re-ordering of elements, keeps all elements
even if they are the same)
e.g. Join[ { {1,2,3}, {4,5,6}, {7,8,9} } ]
* Keeplf[ <condition>, <list> ]
e.g. Keeplf] x<3, {1,2,3,4,1,5,6} ] returns {1,2,1}
* Last[ <list>, <number n>]
Returns a list containing just the last n elements of the list.
* Product| <list> ]
Calculates the product of all list elements
* RemoveUndefined[ <list> |
Removes undefined objects from a list
e.g. RemoveUndefined[Sequence[(-1)™, 1, -3, -1, 0.5]]
* Reverse[ <list> |
Reverses the order of a list
* Sort[ <list> ]
Sorts a list of numbers, text objects or points (sorts points by x-coordinate)
e.g. Sort[{3, 2, 1}]
e.g. Sort[ {"pears", "apples", "figs"}]
e.g. listl = Sort[ {A, B, C}] list2 = Sequence[Segment[Element[list1, i], Element[list1, 1
+ 111, 1, 1, Length[list1] - 1]
* Sum| <list> |
Calculates the sum of all list elements
Works for numbers, points & vectors, text and functions
e.g. Sum[{1,2,3}] gives youa =6
e.g. Sum[ {x"2,x"3}] gives you f(x)=x"2 + x"3
e.g. Sum[Sequence][i,i,1,100]] gives you a = 5050
e.g. Sum[Sequence[l /(2 k- 1) sin((2 k- 1) x), k, 1, 20]]
e.g. Sum[{(1, 2), (2, 3)}] gives you point A = (3, 5)
e.g. Sum[{(1, 2), 3}] gives you point B = (4, 2)
e.g. Sum[ {"a","b","c"} ] gives "abc"
* Sum|[ <list>, <number n> ]
Calculates the sum of the first n list elements
Works for numbers, points & vectors, text and functions
e.g. Sum[ {1, 2, 3,4, 5, 6}, 4] gives you 10
* Union[ <list1>, <list2>]
Joins lists and removes items that appear multiple times

Plotting Data

* BarChart[ <start>, <end>, <list of heights> ]
e.g. BarChart[ 10, 20, {1,2,3,4,5} ]
gives you a bar chart with five bars of specified height in the interval [10, 20]

* BarChart[ <start>, <end>, <expression>, <variable>, <from>, <to> |

* BarChart[ <start>, <end>, <expression>, <variable>, <from>, <to>, <step> |
e.g.p=0.1

q=0.9



n=10
BarChart[ -0.5, n + 0.5, BinomialCoefficient[n,k]*p~k*q"(n-k), k, 0, n ]

* BarChart[ <raw data>, <width> ]
e.g. BarChart[ {1,1,1,2,2,2,2.2.33,3,5,5,5,5}, 1]

* BarChart[ <data>, <frequencies>]
<data> must be a list where the numbers go up by a constant amount
e.g. BarChart[ {10,11,12,13,14}, {5,8,12,0,1}]
e.g. BarChart[{5, 6, 7, 8, 9}, {1, 0, 12, 43, 3}]
e.g. BarChart[{0.3, 0.4, 0.5, 0.6}, {12, 33, 13, 4}]

* BarChart[ <data>, <frequencies>, <width> |
<data> must be a list where the numbers go up by a constant amount
e.g. leaves gaps between bars: BarChart[ {10,11,12,13,14}, {5,8,12,0,1}, 0.5]
e.g. line graph: BarChart[ {10,11,12,13,14}, {5,8,12,0,1}, 0]

* BoxPlot[ <yOffset>, <yScale>, <raw data> |
e.g. BoxPlot[0, 1, {2,2,3,4,5,5,6,7,7,8,8,8,9} ]

* BoxPlot[ <yOffset>, <yScale>, <start>, <Q1>, <median>, <Q3>, <end> |
e.g. BoxPlot[0, 1, 2, 3,4, 5, 6]

* Histogram[ <class boundaries>, <heights> ]
e.g. Histogram[ {1,2,4,8}, {3,5,7} ]

* Histogram[ <class boundaries>, <raw data> |
e.g. Histogram[{1,1.5,2,4},{1.0,1.1,1.1,1.2,1.7,1.7,1.8,2.2,2.5,4.0}]

Curve Fitting
* FitExp[ <list of points> |
Calculates the exponential regression curve
* FitLine[ <list of points> ]
Calculates the y on x regression line of the points.
* FitLineX][ <list of points> ]
Calculates the x on y regression line of the points.
* FitLog[ <list of points> |
Calculates the logarithmic regression curve
* FitPoly[ <list of points>, <number n> |
Calculates the regression polynomial of degree n
* FitPow][ <list of points> |
Calculates the regression curve in the form a x”b.
All points used need to be in the first quadrant of the coordinate system.
* PMCC]J <list of x-coordinates™> , <list of y-coordinates> ]
* PMCC]J <list of points> ]
Product moment correlation coefficient
* Polynomial[ <list of points> ] (in 3.0, undocumented)
Interpolation polynomial of degree (n-1) through n points.

Number Theory

* BinomialCoefficient] <Number n>, <Number r>]



Calculates the binomial coefficient "n choose r".
* GCD[ <number a>, <number b> ]
* GCDJ <list> |
Greatest common divisor
(UK _English HCF Highest common factor)
* LCM[ <number a>, <number b> |
* LCM[ <list> ]
Lowest common multiple (UK) of two numbers a and b or elements of the list
Least common multpile (US)

Calculus and Pre-calculus
* Ellipse[ <point A>, <point B>, <point C> ]
Draws an ellipse with foci A and B passing through C
* Expand[ <function> ]
Multiplies out the brackets and simplifies
e.g. Expand[(x+3)(x-4)] gives you f(x) = x"2 - x - 12
e.g. Expand[ x*3 + x*3 ] gives f(x) =2 x"3
* Factor[ <polynomial> ]
Factors the polynomial
e.g. Factor[x"2+x-6] gives you f(x) = (x-2)(x+3)
* Hyperbola[ <point A>, <point B>, <point C> ]
Draws a hyperbola with foci A and B passing through C
* Simplify[ <function> ]
e.g. Simplify[x + x + x]
* TrapezoidalSum[ <function>, <start>, <end>, <# steps> |
Works the same way as UpperSum|[] and LowerSum[ ]
e.g. TrapezoidalSum[ x*2, 1, 2, 5]

Technical Controls
* AxisStepX[]
* AxisStep Y[ ]
Return the current step for the x-axis or y-axis respectively.
Together with the Corner[n] and Sequence[] commands, these allow you to create
custom axes.
* AxisStepX[ ]
* AxisStepY[]
Return the current step for the x-axis or y-axis respectively.
Together with the Corner[n] and Sequence[] commands, these allow you to create
custom axes.
* TableText[ <listl>, <list2>, <list3>, ... ]
Creates a text that contains the table of list objects.
* TableText[ <listl>, <list2>, <list3>, ..., <orientation>]
The optional text controls the orientation and alignment of the table.
Possible values: "v1", "vc", "vr", "v", "h", "hl", "hc", "hr"



v = vertical, i.e. lists are columns

h = horizontal, i.e. lists are rows

1 = left aligned

r = right aligned

¢ = centered

Default is "v1"

e.g. TableText[ { x*2, x"3, x4 } ] 1 column, left aligned

e.g. TableText[ Sequence[ 1”2, 1, 1, 10] ] 1 column, left aligned
e.g. TableText[{1,2,3,4},{1,4,9,16},"v"] 2 columns, left aligned
e.g. TableText[{1,2,3,4},{1,4,9,16},"h"] 2 rows, left aligned
e.g. TableText[{11.2,123.1,32423.9,"234.0"},"r"] 1 column right aligned

* Text[ <object> ]

* Text[ <object>, <substitute values for variables> ]

* Text[ <object>, <point> ]

* Text[ <object>, <point>, <substitute values for variables> |
Returns the formula for the object as a text object, with or without variables substituted
Point defines where the text will be drawn
eg.a=2

c=a"2

Text[c] and Text[c, true] both return "4"

Text[c, false] returns "a"2"

Text["hello", (2,3)] draws the text at (2,3)



