
Changes with the next revease

Since GoeGebra is preparing to release a new version it is worthwhile to look at the new version, 3.2, that
should come out shortly. The menus are slightly modified.

New commands in the new version

Statistics
 * Covariance[<list1 of numbers> , <list2 of numbers>]
 Calculates the covariance using the elements of both lists
 * Covariance[<list of points>]
 Calculates the covariance using the x- and y-coordinates of the points
 * InverseNormal[<mean>, <standard deviation>, <number>]
 Calculates the function inversephi(x) * (standard deviation) + (mean)
 where inversephi(x) is the inverse of the pdf for N(0,1)
 (pdf = probability density function, ie a non-negative function with area 1)
 * Mean[<list>]
 Calculates the mean of the list elements
 * MeanX[<list of points>]
 Mean of the x coordinates of the points in the list
 * MeanY[<list of points>]
 Mean of the y coordinates of the points in the list
 * Median[<list>]
 Determines the median of the list elements
 * Mode[<list>]
 Determines the mode(s) of the list elements
 Mode[{1,2,3,4}] returns {}
 Mode[{1,1,1,2,3,4}] returns {1}
 Mode[{1,1,2,2,3,3,4}] returns {1,2,3}
 * Normal[<mean>, <standard deviation>, <number>]
 Calculates the function (phi(x) - mean) / (standard deviation)
 where phi(x) is the pdf for N(0,1)
 (pdf = probability density function, ie a non-negative function with area 1)
 * Q1[<list>]
 Determines the lower quartile of the list elements
 * Q3[<list>]
 Determines the upper quartile of the list elements
 * RandomBetween[<min>, <max>]
 Generates a random integer between min and max (inclusive)
 The numbers min and max need to be integers.
 * RandomBinomial[<number n>, <number p>]
 Generates a random number from a binomial distribution
 * RandomNormal[<mean>, <standard deviation>]
 Generates a random number from a normal distribution
 * RandomPoisson[<mean>]
 Generates a random number from a poisson distribution
 * SD[<list>]
 Calculates the standard deviation of list elements
 * SigmaXX[<list of numbers>]
 * SigmaXX[<list of points>]

 Calculates the sum of squares (of list elements, or x coordinates of points)
 * SigmaXY[<list of x-coordinates> , <list of y-coordinates>]
 * SigmaXY[<list of points>]
 Calculates the sum of (the product of the x and y coordinates).
 For bivariate data, SigmaXY works out sum of (x coord times y coord)
 * SigmaYY[<list of points>]
 Calculates the sum of squares of y coords
 For bivariate data, SigmaYY = sum of (y coord ^2)
 * Sxx[<list of numbers> , <list of numbers>]
 Calculates the statistic sigma(x^2) - sigma(x) * sigma(x)/n
 * Sxx[<list of points>]
 Calculates the statistic sigma(x^2) - sigma(x) * sigma(x)/n
 * Sxy[<list of numbers> , <list of numbers>]
 Calculates the statistic sigma(xy) - sigma(x) * sigma(y)/n
 * Sxy[<list of points>]
 Calculates the statistic sigma(xy) - sigma(x) * sigma(y)/n
 * Syy[<list of numbers> , <list of numbers>]
 Calculates the statistic sigma(y^2) - sigma(y) * sigma(y)/n
 * Syy[<list of points>]
 Calculates the statistic sigma(y^2) - sigma(y) * sigma(y)/n
 * Take[<list> , <number m>, <number n>]
 Returns a list containing the elements from positions m to n of the list.
 * Variance[<list>]
 Calculates the variance of list elements

Working With Lists
 * Append[<list>, <object>]
 Appends the object to the list
 e.g. Append[{1, 2, 3}, (5, 5)] gives you {1, 2, 3, (5, 5)}
 * Append[<object>, <list>]
 Appends the list to the object
 e.g. Append[(5, 5), {1, 2, 3}] gives you {(5, 5), 1, 2, 3}
 * CountIf[<condition>, <list>]
 Counts the number of elements in the list satisfying the condition
 e.g. CountIf[x < 3, {1, 2, 3, 4, 5}]
 e.g. CountIf[x<3, A1:A10] where A1:A10 is a range of cells in the spreadsheet
 * First[<list>, n]
 Returns a list containing just the first n elements of the list.
 * Insert[<list 1>, <list 2>, <position>]
 * Intersection[<list 1>, <list 2>]
 Gives you all elements that are part of both lists
 * Join[<list 1>, <list 2>, ...]
 Joins the two (or more) lists (no re-ordering of elements, keeps all elements even if they
are the same)
 e.g. Join[{1,2,3}, {4,5,6}]
 * Join[<list of lists>]

 Joins the sub-lists into one longer list (no re-ordering of elements, keeps all elements
even if they are the same)
 e.g. Join[{ {1,2,3}, {4,5,6}, {7,8,9} }]
 * KeepIf[<condition>, <list>]
 e.g. KeepIf[x<3, {1,2,3,4,1,5,6}] returns {1,2,1}
 * Last[<list> , <number n>]
 Returns a list containing just the last n elements of the list.
 * Product[<list>]
 Calculates the product of all list elements
 * RemoveUndefined[<list>]
 Removes undefined objects from a list
 e.g. RemoveUndefined[Sequence[(-1)^i, i, -3, -1, 0.5]]
 * Reverse[<list>]
 Reverses the order of a list
 * Sort[<list>]
 Sorts a list of numbers, text objects or points (sorts points by x-coordinate)
 e.g. Sort[{3, 2, 1}]
 e.g. Sort[{"pears", "apples", "figs"}]
 e.g. list1 = Sort[{A, B, C}] list2 = Sequence[Segment[Element[list1, i], Element[list1, i
+ 1]], i, 1, Length[list1] - 1]
 * Sum[<list>]
 Calculates the sum of all list elements
 Works for numbers, points & vectors, text and functions
 e.g. Sum[{1,2,3}] gives you a = 6
 e.g. Sum[{x^2,x^3}] gives you f(x)=x^2 + x^3
 e.g. Sum[Sequence[i,i,1,100]] gives you a = 5050
 e.g. Sum[Sequence[1 / (2 k - 1) sin((2 k - 1) x), k, 1, 20]]
 e.g. Sum[{(1, 2), (2, 3)}] gives you point A = (3, 5)
 e.g. Sum[{(1, 2), 3}] gives you point B = (4, 2)
 e.g. Sum[{"a","b","c"}] gives "abc"
 * Sum[<list>, <number n>]
 Calculates the sum of the first n list elements
 Works for numbers, points & vectors, text and functions
 e.g. Sum[{1, 2, 3, 4, 5, 6}, 4] gives you 10
 * Union[<list1>, <list2>]
 Joins lists and removes items that appear multiple times

Plotting Data
 * BarChart[<start>, <end>, <list of heights>]
 e.g. BarChart[10, 20, {1,2,3,4,5}]
 gives you a bar chart with five bars of specified height in the interval [10, 20]
 * BarChart[<start>, <end>, <expression>, <variable>, <from>, <to>]
 * BarChart[<start>, <end>, <expression>, <variable>, <from>, <to>, <step>]
 e.g. p = 0.1
 q = 0.9

 n = 10
 BarChart[-0.5, n + 0.5, BinomialCoefficient[n,k]*p^k*q^(n-k), k, 0, n]
 * BarChart[<raw data>, <width>]
 e.g. BarChart[{1,1,1,2,2,2,2,2,3,3,3,5,5,5,5}, 1]
 * BarChart[<data>, <frequencies>]
 <data> must be a list where the numbers go up by a constant amount
 e.g. BarChart[{10,11,12,13,14}, {5,8,12,0,1}]
 e.g. BarChart[{5, 6, 7, 8, 9}, {1, 0, 12, 43, 3}]
 e.g. BarChart[{0.3, 0.4, 0.5, 0.6}, {12, 33, 13, 4}]
 * BarChart[<data>, <frequencies>, <width>]
 <data> must be a list where the numbers go up by a constant amount
 e.g. leaves gaps between bars: BarChart[{10,11,12,13,14}, {5,8,12,0,1}, 0.5]
 e.g. line graph: BarChart[{10,11,12,13,14}, {5,8,12,0,1}, 0]
 * BoxPlot[<yOffset>, <yScale>, <raw data>]
 e.g. BoxPlot[0, 1, {2,2,3,4,5,5,6,7,7,8,8,8,9}]
 * BoxPlot[<yOffset>, <yScale>, <start>, <Q1>, <median>, <Q3>, <end>]
 e.g. BoxPlot[0, 1, 2, 3, 4, 5, 6]
 * Histogram[<class boundaries>, <heights>]
 e.g. Histogram[{1,2,4,8}, {3,5,7}]
 * Histogram[<class boundaries>, <raw data>]
 e.g. Histogram[{1,1.5,2,4},{1.0,1.1,1.1,1.2,1.7,1.7,1.8,2.2,2.5,4.0}]

Curve Fitting
 * FitExp[<list of points>]
 Calculates the exponential regression curve
 * FitLine[<list of points>]
 Calculates the y on x regression line of the points.
 * FitLineX[<list of points>]
 Calculates the x on y regression line of the points.
 * FitLog[<list of points>]
 Calculates the logarithmic regression curve
 * FitPoly[<list of points>, <number n>]
 Calculates the regression polynomial of degree n
 * FitPow[<list of points>]
 Calculates the regression curve in the form a x^b.
 All points used need to be in the first quadrant of the coordinate system.
 * PMCC[<list of x-coordinates> , <list of y-coordinates>]
 * PMCC[<list of points>]
 Product moment correlation coefficient
 * Polynomial[<list of points>] (in 3.0, undocumented)
 Interpolation polynomial of degree (n-1) through n points.

Number Theory
 * BinomialCoefficient[<Number n>, <Number r>]

 Calculates the binomial coefficient "n choose r".
 * GCD[<number a>, <number b>]
 * GCD[<list>]
 Greatest common divisor
 (UK_English HCF Highest common factor)
 * LCM[<number a>, <number b>]
 * LCM[<list>]
 Lowest common multiple (UK) of two numbers a and b or elements of the list
 Least common multpile (US)

Calculus and Pre-calculus
 * Ellipse[<point A>, <point B>, <point C>]
 Draws an ellipse with foci A and B passing through C
 * Expand[<function>]
 Multiplies out the brackets and simplifies
 e.g. Expand[(x+3)(x-4)] gives you f(x) = x^2 - x - 12
 e.g. Expand[x^3 + x^3] gives f(x) = 2 x^3
 * Factor[<polynomial>]
 Factors the polynomial
 e.g. Factor[x^2+x-6] gives you f(x) = (x-2)(x+3)
 * Hyperbola[<point A>, <point B>, <point C>]
 Draws a hyperbola with foci A and B passing through C
 * Simplify[<function>]
 e.g. Simplify[x + x + x]
 * TrapezoidalSum[<function>, <start>, <end>, <# steps>]
 Works the same way as UpperSum[] and LowerSum[]
 e.g. TrapezoidalSum[x^2, 1, 2, 5]

Technical Controls
 * AxisStepX[]
 * AxisStepY[]
 Return the current step for the x-axis or y-axis respectively.
 Together with the Corner[n] and Sequence[] commands, these allow you to create
custom axes.
 * AxisStepX[]
 * AxisStepY[]
 Return the current step for the x-axis or y-axis respectively.
 Together with the Corner[n] and Sequence[] commands, these allow you to create
custom axes.
 * TableText[<list1>, <list2>, <list3>, ...]
 Creates a text that contains the table of list objects.
 * TableText[<list1>, <list2>, <list3>, ... , <orientation>]
 The optional text controls the orientation and alignment of the table.
 Possible values: "vl", "vc", "vr", "v", "h", "hl", "hc", "hr"

 v = vertical, i.e. lists are columns
 h = horizontal, i.e. lists are rows
 l = left aligned
 r = right aligned
 c = centered
 Default is "vl"
 e.g. TableText[{ x^2, x^3, x^4 }] 1 column, left aligned
 e.g. TableText[Sequence[i^2, i, 1, 10]] 1 column, left aligned
 e.g. TableText[{1,2,3,4},{1,4,9,16},"v"] 2 columns, left aligned
 e.g. TableText[{1,2,3,4},{1,4,9,16},"h"] 2 rows, left aligned
 e.g. TableText[{11.2,123.1,32423.9,"234.0"},"r"] 1 column right aligned
 * Text[<object>]
 * Text[<object>, <substitute values for variables>]
 * Text[<object>, <point>]
 * Text[<object>, <point>, <substitute values for variables>]
 Returns the formula for the object as a text object, with or without variables substituted
 Point defines where the text will be drawn
 e.g. a = 2
 c = a^2
 Text[c] and Text[c, true] both return "4"
 Text[c, false] returns "a^2"
 Text["hello", (2,3)] draws the text at (2,3)

