TangentLine(x^2+1,x,1) 2x Plot([2x,x^2+1]) Taylor(sin(x),x,5,0) (x^5)/120+(-x^3)/6+x Taylor(sin(x),x,9,0) 2.755731922398589‰-6x^9+-0.000198412698413x^7+(x^5)/120+(-x^3)/6+x scroll(n,1,20,1) plot([ln(x),Taylor(ln(x),x,n,1)]) DSolve(y'(t) + y(t) = sin(t) , y(t) , y(0) = 5) (-cos(t))/2+(sin(t))/2+(11exp(-t))/2 DSolve(y'(t) + y(t) = sin(t) , y(t) , y(0) = 5) (-cos(t))/2+(sin(t))/2+(11exp(-t))/2 DSolve(y'(t) + y(t) = sin(t) , y(t) , no) (-cos(t))/2+(sin(t))/2+(exp(-t))/2+y(0)*exp(-t) DSolve(y''(x) + 2y'(x) + y(x) = x, y(x), [1,2]) x+3exp(-x)+4x*exp(-x)-2 Solve(3x^2+4x-3=0) [(-sqrt(13))/3-2/3,(sqrt(13))/3-2/3] SolveSystem([x+2y=1, x^2+y^2=10]) [[x,y],[3,-1]] A=[[1,2],[3,4]] [[1,2],[3,4]] [[1,2,-1],[1,1,3]] [[1,2,-1],[1,1,3]] RowReduce([[1,2,-1],[1,1,3]]) [[1,0,7],[0,1,-4]] A [[1,2],[3,4]] B=Inverse(A) [[-2,1],[3/2,-1/2]] A*B [[1,0],[0,1]] Transpose(A) [[1,3],[2,4]] Eigenvalues(A) [-0.372281323269014,5.372281323269014] Eigenvectors(A) [[-0.824564840132394,-0.42222915041526],[0.565767464968992,-0.923052314250193]] Eigenvalues([[0,-1],[1,0]]) [Ý,-Ý] Eigenvectors([[0,-1],[1,0]] [[-1/(sqrt(2)),-1/(sqrt(2))],[Ý/(sqrt(2)),-Ý/(sqrt(2))]] Plot3d(sin(x^2+y+T),x=[-3,3],y=[-3,3]) Newtons(a,n) f(x)=x^2-2 loop(i,1,n) a=a-f(a)/f'(a) end a Newtons(1,5) 1.414213562373095 sqrt(2) 1.414213562373095