Math 1330 ONLINE Sample Free Response Questions Test 2 Solutions

1. There are no holes.

VA: To find the vertical asymptote, set the denominator equal to zero and solve for x. There's a vertical asymptote when x = -4.

HA: The degree of the numerator and the degree of the denominator are the same. The leading coefficient of the numerator is 1; the leading coefficient of the denominator is 1. To find the horizontal asymptote, make a fraction of the leading coefficients. The horizontal asymptote occurs when y = 1.

X int: To find the x intercept, set the numerator equal to zero and solve for x. There's an x intercept when x = 1.

Y int: To find the y intercept, compute f(0), which is $\frac{-1}{4}$.

Graph:

2. Factor completely: $f(x) = \frac{(x-4)(x+4)}{2x(x+4)}$. Reduce: $f(x) = \frac{(x-4)}{2x}, x \neq -4$ There's a hole in the graph when x = -4. To find the y value of the hole, sub -4 into what's left after you reduce: $\frac{-4-4}{2(-4)} = \frac{-8}{-8} = 1$. The hole occurs at (-4, 1). Continue with $f(x) = \frac{(x-4)}{2x}, x \neq -4$. VA: There's a vertical asymptote when 2x = 0, or x = 0 HA: There's a horizontal asymptote at $y = \frac{1}{2}$

Xint: There's an x intercept when x-4=0, or x=4Y int: Try to sub in 0 for x, but you'll get a zero in the denominator. There is no y intercept.

Graph:

3. Write in standard form:

$$x^{2} + y^{2} - 2x + 6y - 6 = 0$$

$$x^{2} - 2x + y^{2} + 6y = 6$$

$$x^{2} - 2x + 1 + y^{2} + 6y + 9 = 6 + 1 + 9$$

$$(x - 1)^{2} + (y + 3)^{2} = 16$$

Center is (1, -3); radius is 4.

4 (a) $\frac{x^2}{9} + \frac{y^2}{16} = 1$ Center (0, 0). Oriented vertically. Vertices $(0, \pm 4)$. a = 4, b = 3 and $c = \sqrt{big - small}$, so $c = \sqrt{16 - 9} = \sqrt{7}$ Length of major axis is 8. Length of minor axis is 6. Foci $(0, \pm \sqrt{7})$. Eccentricity $= \frac{\sqrt{7}}{4}$

Graph:

5 (a) $(x-2)^2 = 8y$ Parabola opens up. Vertex is (2, 0). P = 2 Directrix is y = -2. Focus is (2, 2). Focal width is 8 Endpoints of focal chord are (6, 2) and (-2, 2)

5(b) $y^2 = -12x$ Parabola opens left. Vertex is (0, 0) P = -3 Directrix is x = 3Focus is (-3, 0) Focal width is 12 Endpoints of focal chord are (-3, 6) and (-3, -6) Graph:

6(b) $\frac{y^2}{16} - \frac{x^2}{4} = 1$ Oriented vertically. Center (0, 0) $a = 4, b = 2, c = \sqrt{big + small} = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5}$ Vertices: (0,±4) Foci: (0,±2 $\sqrt{5}$) Length of the transverse axis = 8 Length of the conjugate axis = 4 Slopes of asymptotes are $\pm \sqrt{\frac{yden}{xden}} = \pm \sqrt{\frac{16}{4}} = \pm \frac{4}{2} = \pm 2$ Equations of asymptotes are $y = \pm 2x$ Graph:

7.
$$f(x) = x(x-2)^2(x+3)^2$$

X intercepts are 0 (multiplicity 1), 2 (multiplicity 2) and -3(multiplicity 2)

Y intercept is $f(0) = 0(0-2)^2 (0+3)^2 = 0$

Leading term is $x \cdot x^2 \cdot x^2 = x^5$ which has odd degree and a positive leading coefficient. End behavior is $\checkmark \checkmark$. Graph:

8 (a) $f(x) = \sqrt{x-5} + 2$ Basic square root function shifted 5 units right and up 2. Key point (0, 0) translates to (5, 2). Graph:

Range of the function is $[2,\infty)$. The function is one-to-one.

8 (b)
$$f(x) = |x+1| - 3$$

Basic absolute value function shifted one unit left and down 3. Key point (0, 0) translates to (-1, -3). Graph:

Range of the function is $[-3,\infty)$. The function is not one-to-one.

9. The first equation is a vertically oriented hyperbola. Center at (0,0) Vertices (0, 4) and (0, -4). Points on the conjugate axis (-3, 0) and (3, 0). Draw the box and sketch.

The second equations is a circle with center at (2, 1) and radius 6. Graph it.

Count the number of intersection points. There are 4.

10.
$$\begin{aligned} x^2 + y^2 &= 9\\ 9x^2 - y^2 &= 1 \end{aligned}$$

Add the two equations together (note: in other problems, you may need to multiply one equation or both by constants to get the opposite coefficients that you need).

$$x^{2} + y^{2} = 9$$
$$9x^{2} - y^{2} = 1$$
$$10x^{2} = 10$$
$$x^{2} = 1$$
$$x = \pm 1$$

Now find the y values.

If
$$x = 1$$
,
 $1^{2} + y^{2} = 9$
 $1 + y^{2} = 9$
 $y^{2} = 8$
 $y = \pm\sqrt{8}$
 $y = \pm 2\sqrt{2}$
If $x = -1$,
 $(-1)^{2} + y^{2} = 9$
 $1 + y^{2} = 9$
 $y^{2} = 8$
 $y = \pm\sqrt{8}$
 $y = \pm 2\sqrt{2}$

There are four solutions: $(1, 2\sqrt{2}), (1, -2\sqrt{2}), (-1, 2\sqrt{2}), (-1, -2\sqrt{2}).$

11. Draw and label a right triangle. If $\tan B = \frac{2\sqrt{3}}{5}$, then the side opposite angle B is $2\sqrt{3}$ and the side adjacent to angle B is 5.

Find the length of AB using Pythagorean Theorem.

$$(2\sqrt{3})^2 + 5^2 = c^2$$
$$12 + 25 = c^2$$
$$37 = c^2$$
$$\sqrt{37} = c$$

Now read off the six trig functions of angle A.

$$\sin A = \frac{5}{\sqrt{37}} = \frac{5\sqrt{37}}{37}$$
$$\cos A = \frac{2\sqrt{3}}{\sqrt{37}} = \frac{2\sqrt{3 \cdot 37}}{37} = \frac{2\sqrt{111}}{37}$$
$$\tan A = \frac{5}{2\sqrt{3}} = \frac{5\sqrt{3}}{6}$$
$$\csc A = \frac{\sqrt{37}}{5}$$
$$\sec A = \frac{\sqrt{37}}{2\sqrt{3}} = \frac{\sqrt{111}}{6}$$
$$\cot A = \frac{2\sqrt{3}}{5}$$
Read off the six trig functions of angle B.
$$\sin B = \frac{2\sqrt{3}}{\sqrt{37}} = \frac{2\sqrt{3 \cdot 37}}{37} = \frac{2\sqrt{111}}{37}$$

$$\sin B = \frac{2\sqrt{3}}{\sqrt{37}} = \frac{2\sqrt{3}\sqrt{37}}{37} = \frac{2\sqrt{3}}{37}$$
$$\cos B = \frac{5}{\sqrt{37}} = \frac{5\sqrt{37}}{37}$$
$$\tan B = \frac{2\sqrt{3}}{5}$$
$$\csc B = \frac{\sqrt{37}}{2\sqrt{3}} = \frac{\sqrt{111}}{6}$$
$$\sec B = \frac{\sqrt{37}}{5}$$
$$\cot B = \frac{5}{2\sqrt{3}} = \frac{5\sqrt{3}}{6}$$

12. (a) $\sin(300^\circ)$

Angle is in quadrant 4. Sine is negative in quadrant 4. Reference angle is $360^{\circ} - 300^{\circ} = 60^{\circ}$. So $\sin(300^{\circ}) = -\sin(60^{\circ}) = \frac{-\sqrt{3}}{2}$. (b) $\tan\left(\frac{-\pi}{4}\right)$

Coterminal angle is $\frac{-\pi}{4} + 2\pi = \frac{7\pi}{4}$. Angle is in quadrant 4. Tangent is negative in quadrant 4. Reference angle is $2\pi - \frac{7\pi}{4} = \frac{\pi}{4}$. So $\tan\left(\frac{-\pi}{4}\right) = -\tan\left(\frac{\pi}{4}\right) = -1$.

(c) $\cos(120^{\circ})$

Angle is in quadrant 2. Cosine is negative in quadrant 2. Reference angle is

$$180^{\circ} - 120^{\circ} = 60^{\circ}$$
. So $\cos(120^{\circ}) = -\cos(60^{\circ}) = \frac{-1}{2}$.
(d) $\sec(225^{\circ})$

Find $\cos(225^\circ)$ first, then find its reciprocal. Angle is in quadrant 3. Cosine is negative in quadrant 3. Reference angle is $225^\circ - 180^\circ = 45^\circ$. So

 $\cos(225^\circ) = -\cos(45^\circ) = \frac{-\sqrt{2}}{2}$. To find $\sec(225^\circ)$, take the reciprocal of $\frac{-\sqrt{2}}{2}$. $\sec(225^\circ) = \frac{-2}{\sqrt{2}} = \frac{-2\sqrt{2}}{2} = -\sqrt{2}$.

(e)
$$\sin\left(\frac{5\pi}{6}\right)$$

Angle is in quadrant 2. Sine is positive in quadrant 2. Reference angle is $\pi - \frac{5\pi}{6} = \frac{\pi}{6}$. So $\sin\left(\frac{5\pi}{6}\right) = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$

(f) $\csc\left(\frac{4\pi}{3}\right)$ Find $\sin\left(\frac{4\pi}{3}\right)$ first, then find its reciprocal. Angle is in quadrant 3. Sine is negative in quadrant 3. Reference angle is $\frac{4\pi}{3} - \pi = \frac{\pi}{3}$. $\sin\left(\frac{4\pi}{3}\right) = -\sin\left(\frac{\pi}{3}\right) = \frac{-\sqrt{3}}{2}$. To find $\csc\left(\frac{4\pi}{3}\right)$, take the reciprocal. $\csc\left(\frac{4\pi}{3}\right) = -\frac{2}{\sqrt{3}} = \frac{-2\sqrt{3}}{3}$.

(g) $\cot(-45^\circ)$

To find $\cot(-45^\circ)$, start by finding $\tan(-45^\circ)$. Find a positive coterminal angle. $-45^\circ + 360^\circ = 315^\circ$. So find $\tan(315^\circ)$. Angle is in quadrant 4. Tangent is negative in quadrant 4. Reference angle is $360^\circ - 315^\circ = 45^\circ$. $\tan(315^\circ) = -\tan(45^\circ) = -1$. To find $\cot(-45^\circ)$, take the reciprocal. $\cot(-45^\circ) = \frac{1}{-1} = -1$.