
Math 1314  
Lesson 11:  Exponential Functions as Mathematical Models 
 
 
Exponential models can be written in two forms: ( ) xf x a e= ⋅  or ( ) xg x a b= ⋅ or.  In the first 
model, the base of the exponent is the number e, which is approximately 2.71828….  In the 
second model, the base of the exponent is a positive number other than 1.  In both cases, the 
variable is located in the exponent, and that’s why these are called exponential models.   
 
Exponential functions can be either increasing or decreasing.  For a function of the form 
( ) bxf x a e= ⋅ , the function is increasing if 0b >  and is decreasing if 0b < .  If 0b > , the 

function is an exponential growth function.  If 0b > , the function is an exponential decay 
function.  The value a is the initial value or the initial amount.  The value b is called the growth 
constant or the decay constant, depending on which type of function is given. 
 
 
 
 
 
 
 
 
For a function of the form ( ) xg x a b= ⋅ , the function is increasing if 1b >  and is decreasing if 
0 1b< < . 
 
We can also compute the rate at which an exponential function is increasing or decreasing.  
We’ll do this by finding a numerical derivative. 
 
 
We can use the regression feature to find an exponential equation for data that’s given. 
 
Example 1:  Identify each function as a growth function or a decay function.  Find the initial 
value.  Calculate ( )10f  and ( )10f ′ . 

A.  ( ) 0.31612.75 xf x e−=     B.  ( ) ( )150 1.0616 xg x =  
 
 
 
 
 
 
 
 



POPPER 8, problems 1 and 2: 

For problems 1 and 2, use this function:  ( )( ) 1.68 1.047 tQ t = . 

1.  Is this a growth function or a decay function? 

A.  growth    B.  decay 

 

2.  Find (2)Q  and round to two decimal places. 

A.  5.03  B.  1.79  C.  3.52  D.  1.84  



Example 2:  Suppose the points (0, 10000) and (2, 10940) lie on the graph of a function.  Find 
the equation of the function in the form ( ) bxf x a e= ⋅ using GeoGebra, assuming that the 
function is exponential. 
 
 
 
 
 
 
 
 
Example 2, revisited:  Suppose the points (0, 10000) and (2, 10940) lie on the graph of a 
function.  Find the equation of the function in the form ( ) xg x a b= ⋅ , assuming that the function 
is exponential. 
 
 
 
 
 
 
 
 
 
 
Uninhibited Exponential Growth 
 
Some common exponential applications model uninhibited exponential growth.  This means that 
this is no “upper limit” on the value of the function.  It can simply keep growing and growing.  
Problems of this type include population growth problems and growth of investment assets. 
 
Example 3:   A biologist wants to study the growth of a certain strain of bacteria.  She starts 
with a culture containing 25,000 bacteria.  After three hours, the number of bacteria has grown to 
63,000.  Assume the population grows exponentially and the growth is uninhibited. 
 
A.  Find an exponential equation that models this experiment. 
 
 
 
 
B.  How many bacteria will be present in the culture 6 hours after she started her study?   
 
 
 
C.  What will be the rate of growth 6 hours after she started her study?   
 



Example 4:  The sales from ABC Company for the years 1998 – 2003 are given below.  Sales 
data was collected at the end of each year. 
 

Year 1998 1999 2000 2001 2002 2003 
Profits in millions of dollars 51.4 53.2 55.8 56.1 58.1 59.0 

 
A.  Find an exponential regression equation that models this information. 
 
 
 
B.  Using this model, what were the company’s sales in 2006? 
 
 
 
C.  Find the rate at which the company’s profits were changing at the end of 2007, using the 
model. 
 
 
 
 
 
 
 
 
Example 5:  In 1975, the national debt was approximately $500 billion.  In 1990, the national 
debt was about $2.9 trillion.  In 2003, the national debt was approximately $6.2 trillion.  
Currently, the national debt is about $16.5 trillion.  Find an exponential function (assume that 
growth of the national debt is uninhibited) that models the national debt, and use it to predict the 
national debt in 2016. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Limited Growth Models 
 
Some exponential growth is limited.  Here are some examples: 
 
Learning Curves 
 
A worker on an assembly line performs the same task repeatedly throughout the workday.  With 
experience, the worker will perform at or near an optimal level.  However, when first learning to 
do the task, the worker’s productivity will be much lower.  During these early experiences, the 
worker’s productivity will increase dramatically.  Then, once the worker is thoroughly familiar 
with the task, there will be little change to his/her productivity.   
 
 
The function that models this situation will have the form 
 

( ) ktQ t C Ae−= −  
 
This model is called a learning curve and the graph of the function will look something like this: 
 

 
 

The graph will have a y intercept at C – A and a horizontal asymptote at y = C.  Because of the 
horizontal asymptote, we know that this function does not model uninhibited growth. 
 
 
 
 



Example 6:  Suppose your company’s HR department determines that an employee will be able 
to assemble 0.5( ) 50 30 tQ t e−= −  products per day, t months after the employee starts working on 
the assembly line. 
 

(A) How many units can a new employee assemble as s/he starts the first day at work? 
 
 
 
 

(B) How many units should an employee be able to assemble after one month at work? 
After two months at work?  After six months at work? 
 
 
 
 
 
 
 
 
 
 

(C) How many units should an experienced worker be able to assemble? 
 
 
 
 
 
 

(D) At what rate is an employee’s productivity changing 4 months after starting to work? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



POPPER 8, question 3:   
 
Suppose your company’s HR department determines that an employee will be able to assemble 

0.5( ) 50 30 tQ t e−= −  products per day, t months after the employee starts working on the assembly 
line.  At what rate will the employee’s productivity be changing 6 months after s/he starts 
working for the company? 
 
What kind of problem is this? 
 

A.  Limit at infinity  B.  AROC  C.  FV  D.  ROC 



Logistic Functions 
 
The last growth model that we will consider involves the logistic function.  The general form of 
the equation is  

( )
1 kt

AQ t
Be−=

+
 

 
and the graph looks something like this: 
 

 
 
 
If we looked at this graph up to around x = 2 and didn’t consider the rest of it, we might think 
that the data modeled was exponential.  Logistic functions typically reach a saturation point – a 
point at which the growth slows down and then eventually levels off.  The part of this graph to 
the right of x = 2 looks more like our learning curve graph from the last example.  Logistic 
functions have some of the features of both types of models. 
 
Note that the graph has a limiting value at y = 5.  In the context of a logistic function, this 
asymptote is called the carrying capacity. 
 
Logistic curves are used to model various types of phenomena.  For example, suppose a new 
gym opens in your neighborhood.  At first membership sales are brisk, and the number of 
members seems to grow exponentially.  But eventually, the market is tapped out, and there are 
fewer and fewer prospective members to attract to the facility.  The rate of growth slows down 
and then may stop all together.   
 
Logistic functions also apply to other physical situations such as population management.  
Suppose a number of animals are introduced into a protected game reserve, with the expectation 
that the population will grow.  Various factors will work together to keep the population from 
growing exponentially (in an uninhibited manner).  The natural resources (food, water, 
protection) may not exist to support a population that gets larger without bound.  Often such 
populations grow according to a logistic model. 



 
Example 7:  A population study was commissioned to determine the growth rate of the fish 
population in a certain area of the Pacific Northwest. The function given below models the 
population where t is measured in years and N is measured in millions of tons. 
   

0.338

2.4( )
1 2.39 tN t

e−=
+

 

 
(A) What was the initial number of fish in the population? 

 
 
 
 
 

(B) What is the carrying capacity in this population? 
 
 
 
 
 

(C) What is the fish population after 3 years? 
 
 
 
 
 

(D) How fast is the fish population changing after 2 years? 
 
 
 
 
 
 

(E) When will the population reach 2 million tons? 
 
 
 
 
 
 
 
 
 
 
 
 



 
Example 8:  Use logistic regression to determine a function that models this data and graph it: 
 
t 1 3 4 7 8 10 
N 55 108 153 280 291 311 
 

(A) Use the model to find (5)N . 
 
 
 
 
 

(B) When will N(t) = 200? 
 
 
 
 
 
 

(C) At what rate is the function changing when t = 6? 
 
 
 
 
 
 
 
 
 
 
 
 
 



Decay 
 
Next, we’ll look at some exponential decay problems. 
 
Example 9:  At the beginning of a study, there are 50 grams of a substance present.  After 17 
days, there are 38.7 grams remaining.   
 
A.  Find an exponential regression model for this situation. 
 
 
 
 
 
B.  How much of the substance will be present after 40 days?   
 
 
 
 
 
C.  What will be the rate of decay on day 40 of the study? Assume the substance decays 
exponentially. 
 
 
 
 
 
 
Exponential decay problems frequently involve the half-life of a substance.  The half-life of a 
substance is the time it takes to reduce the amount of the substance by one-half.  So, if the half- 
life of a radioactive substance is 1000 years, and there are 50 mg present at the beginning of an 
experiment, 1000 years later, there will only be 25 mg of the substance left. 
 
Example 10:  A certain drug has a half-life of 4 hours.  Suppose you take a dose of 1000 
milligrams of the drug.  How much of it is left in your bloodstream 28 hours later? 
 
 
 
 
 
 
 
 
 
 
 
 



 
Example 11:  The half-life of Carbon 14 is 5770 years.  Bones found from an archeological dig 
were found to have 22% of the amount of Carbon 14 that living bones have.  Find the 
approximate age of the bones. 
 
POPPER 8, question 4:   
 
To work this half-life problem, you need two ordered pairs.  One ordered pair is (0, 100) which 
represents 100% present at the time the animal died.  Which of these is a second ordered pair that 
you would use in working this problem? 
 

A.  (100, 5770)  B.  (50, 5770)  C.  (5770, 0)  D.  (5770, 50)  
 
 

 

 

 

 

 

 

 

 

 


