Section 6.2: Introduction to Probability

The ratio $\frac{m}{n}$ is the **relative frequency** of an event E that occurs m times after n repetitions.

Note: The probability of an event is a number that lies between 0 and 1, inclusive.

If $S = \{s_1, s_2, ..., s_n\}$ is a finite sample space with n outcomes, then the events $\{s_1\}, \{s_2\}, ..., \{s_n\}$ are called **simple events** of the experiment.

Once probabilities are assigned to each of these simple events, we obtain a probability distribution.

The probabilities, $P(s_1)$, $P(s_2)$,..., $P(s_n)$ have the following properties:

 $\begin{array}{ll} 1. \ 0 \leq P(s_i) \leq 1, \ i = \{1, 2, 3, ..., n\} \\ 2. \ P(s_1) + P(s_2) + \cdots + P(s_n) = 1 \\ 3. \ P(s_i \cup s_j) = P(s_i) + P(s_j), \ i \neq j \ \text{and} \ i, j = 1, 2, 3, ... n \end{array}$

Example 1: A fair die is cast. List the simple events.

A sample space in which the outcomes of an experiment are equally likely to occur is called a uniform sample space. Let $S = \{s_1, s_2, ..., s_n\}$ be a uniform sample space. Then

$$P(s_1) = P(s_2) = \dots = \frac{P(s_n)}{n} = \frac{1}{n}$$

Finding the probability of an Event E:

- 1. Determine the sample space S.
- 2. Assign probabilities to each of the simple events of S.
- 3. If $E = \{ s_1, s_2, ..., s_k \}$ where $\{ s_1 \}, \{ s_2 \}, ..., \{ s_k \}$ are simple events then

$$P(E) = P(s_1) + P(s_2) + \dots + P(s_k)$$

Note: If $\mathbf{E} = \mathbf{\emptyset}$ then $\mathbf{P}(\mathbf{E}) = \mathbf{0}$.

$$E = N_{u} + s_{v} = b_{v} + s_{v} = 5, b$$

$$P(E) = P(5) + P(0) = \frac{1}{5} + \frac{1}{5} = \frac{2}{5} = \frac{1}{5}$$

Example 2: The accompanying data were obtained from a survey of Americans who were asked: How safe are American-made consumer products

Rating	Number of Respondents	
Very Safe	76	
Somewhat safe	244 Find Tabl	
Not too safe	60	
Not safe at all	8	
Don't know	12 400 people	•

Find the probability distribution associated with this experiment.

	VS	SS	NTS	NSA	ÞK
	76	244	9 7 00	4 30	12 400
P(X)	0.19	\ي.0	0.15	0.02	0.03

Example 3: A pair of fair dice is cast. What is the probability that

Example 4: If one card is drawn from a well-shuffled standard 52-card deck, what is the probability that the card drawn is

K, Q, J - Face Curds

Popper 3: A pair of fair dice is cast. What is the probability that the sum of the numbers falling uppermost is 7? **SECOND DIE**

- a. 0.5833
- b. 0.1667
- c. 0.1944
- d. None of the above

Example 5: A survey was taken in a certain community about the number of the radios in the nouse, the probability distribution was constructed:

Number of Radios	0	1	2	3
Probability	0.01	0.09	0.53	0.37

What is the probability of a house chosen at random from this community having, a 1 or 2 radios² = 2 4 - 2

a. 1 or 2 radios? $P(O + P(O))$					
= 0.09 + 0.53 =	0.62				
b. more than 1 radio? $- P(z) + P(3)$					
= 0.53 + 0.37 =	0.90				
c. not even one radio? 😑 🦻 🜔					
I 0.0\					

Popper 4: If one card is drawn from a well-shuffled standard 52-card deck, what is the probability that the card drawn is a red six?

- a. 1/52
- b. 1/26
- c. 1/13
- d. 2/13
- e. None of the above

Example 6: Let $S = \{s_1, s_2, s_3, s_4, s_5\}$ be the sample space associated with an experiment having the following probability distribution:

Outcome	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> ₃	<i>s</i> ₄	<i>s</i> ₅
Probability	$\frac{1}{10}$	$\frac{1}{5}$	$\frac{1}{20}$	2 5	$\frac{1}{4}$

If $G = \{s_2, s_5\}$, $H = \{s_1, s_2, s_3\}$, and $I = \{s_1, s_4\}$. Find the probability.

a.
$$P(G) = P(s_1) + P(s_2)$$

 $\vdots + i_1 = \frac{1}{2} = 0.45$
b. $P(G \cup H) = P(s_1) + P(s_2) + P(s_3) + P(s_5)$
 $\{s_1, s_2, s_3, s_5\} = i_2 + i_3 + i_4 = \frac{1}{20} = 0.60$
c. $P(I \cap G) = P(0)$
 $\{p_1\} = P(0)$
 $\{p_2\} = 0$

Popper 5: How many quizzes are due this weekend?

- a. 0 b. 1
- c. 2 d. 3

