Math 1313 Section 6.2

Section 6.2: Introduction to Probability

The ratio $\frac{m}{n}$ is the relative frequency of an event E that occurs m times after n repetitions.
Note: The probability of an event is a number that lies between 0 and 1 , inclusive.
If $\mathrm{S}=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{n}\right\}$ is a finite sample space with n outcomes, then the events $\left\{\mathrm{s}_{1}\right\},\left\{\mathrm{s}_{2}\right\}, \ldots,\left\{\mathrm{s}_{n}\right\}$ are called simple events of the experiment.

Once probabilities are assigned to each of these simple events, we obtain a probability distribution.
The probabilities, $\mathrm{P}\left(\mathrm{s}_{1}\right), \mathrm{P}\left(\mathrm{s}_{2}\right), \ldots, \mathrm{P}\left(\mathrm{s}_{n}\right)$ have the following properties:

```
1. \(0 \leq P\left(s_{i}\right) \leq 1, i=\{1,2,3, \ldots, n\}\)
2. \(\mathrm{P}\left(\mathrm{s}_{1}\right)+\mathrm{P}\left(\mathrm{s}_{2}\right)+\cdots+\mathrm{P}\left(\mathrm{s}_{\mathrm{n}}\right)=1\)
3. \(\mathrm{P}\left(\mathrm{s}_{i} \cup \mathrm{~s}_{j}\right)=\mathrm{P}\left(\mathrm{s}_{i}\right)+\mathrm{P}\left(\mathrm{s}_{j}\right), i \neq j\) and \(i, j=1,2,3, \ldots \mathrm{n}\)
```

Example 1: A fair die is cast. List the simple events.

A sample space in which the outcomes of an experiment are equally likely to occur is called a uniform sample space. Let $S=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{n}\right\}$ be a uniform sample space. Then

$$
P\left(\mathrm{~s}_{1}\right)=P\left(\mathrm{~s}_{2}\right)=\cdots=P\left(\mathrm{~s}_{n}\right)=\frac{1}{n}
$$

Finding the probability of an Event E:

1. Determine the sample space S.
2. Assign probabilities to each of the simple events of S.
3. If $E=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{k}\right\}$ where $\left\{\mathrm{s}_{1}\right\},\left\{\mathrm{s}_{2}\right\}, \ldots,\left\{\mathrm{s}_{\mathrm{k}}\right\}$ are simple events then

$$
P(E)=P\left(s_{1}\right)+P\left(\mathrm{~s}_{2}\right)+\cdots+P\left(\mathrm{~s}_{k}\right)
$$

Note: If $\mathrm{E}=\varnothing$ then $\mathrm{P}(\mathrm{E})=0$.

$$
\begin{aligned}
& E=\text { Numbers bigger } 4=5,6 \\
& P(E)=P(5)+P(0)=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3}
\end{aligned}
$$

Math 1313 Section 6.2
Example 2: The accompanying data were obtained from a survey of Americans who were asked: How safe are American-made consumer products

Rating	Number of Respondents	
Very Safe	76	
Somewhat safe	244	
Not too safe	60	Find Total
Not safe at all	8	
Don't know	12	400 people

Find the probability distribution associated with this experiment.

	VS	SS	NTS	NSA	DK
	$\frac{76}{400}$	$\frac{244}{400}$	$\frac{60}{400}$	$\frac{8}{400}$	$\frac{12}{400}$
$P(X)$	0.19	0.61	0.15	0.02	0.03

Example 3: A pair of fair dice is cast. What is the probability that
a. the sum of the numbers shown is less than 5 ?

6 scenarios

$$
P\left(\text { Sum less .5) }=\frac{6}{36}=0.1667\right.
$$

b. at least one 6 is cast?

II Scenarios

$$
P(\text { At least one } 6)=\frac{11}{36}=0.3055
$$

c. you roll doubles? 6 Scenarios

$$
P(\text { Double })=\frac{6}{36}=0.1667:
$$

SECOND DIE
\square $(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)$ $(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)$ $(4,1)(4,2)(4,3)(4,4)(4,5)(4,6) \quad \downarrow$ $(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)$ $(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)$ 36

Math 1313 Section 6.2
Example 4: If one card is drawn from a well-shuffled standard 52-card deck, what is the probability that the card drawn is
a. A club?

$$
P(c l u s)=\frac{13}{52}=0.25
$$

b. A red card?

R 13 Hearts
13 Din~on
c. A seven?

A one from

$$
P(7)=\frac{4}{52}=0.0769
$$

each suit
d. A face card?

$$
K, Q_{د}
$$

A 3 from

$$
P\left(\text { Face curd) }=\frac{12}{52}=0.2308\right.
$$

e. A black 9 ?

* 1 from Cl

$$
P(\text { Rad })=\frac{26}{52}=0.50
$$ each suit

$$
P(\text { Black } a)=\frac{2}{52}=0.0385
$$

I from spade

$$
k, a, \bar{j} \text { - Face curds }
$$

Math 1313 Section 6.2
Popper 3: A pair of fair dice is cast. What is the probability that the sum of the numbers falling uppermost is 7 ?

SECOND DIE

a. 0.5833
b. 0.1667
c. 0.1944
d. None of the above

Example 5: A survey was taken in a certain community about the number or the radios in the house, the probability distribution was constructed:

Number of Radios	0	1	2	3
Probability	0.01	0.09	0.53	0.37

What is the probability of a house chosen at random from this community having, a. 1 or 2 radios?

$$
=0.09+0.53=0.62
$$

b. more than 1 radio? $=p(2) \perp p(3)$

$$
=0.53+0.37=0.90
$$

c. not even one radio? $=P(0)$

$$
=0.01
$$

Popper 4: If one card is drawn from a well-shuffled standard 52-card deck, what is the probability that the card drawn is a red six?
a. $1 / 52$
b. $1 / 26$
c. $1 / 13$
d. $2 / 13$
e. None of the above

Math 1313 Section 6.2
Example 6: Let $S=\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right\}$ be the sample space associated with an experiment having the following probability distribution:

Outcome	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}
Probability	$\frac{1}{10}$	$\frac{1}{5}$	$\frac{1}{20}$	$\frac{2}{5}$	$\frac{1}{4}$

If $G=\left\{s_{2}, s_{5}\right\}, H=\left\{s_{1}, s_{2}, s_{3}\right\}$, and $I=\left\{s_{1}, s_{4}\right\}$. Find the probability.
a. $P(G)=P\left(S_{2}\right)+P\left(S_{5}\right)$

$$
\frac{1}{5}+\frac{1}{4}=\frac{9}{20}=0.45
$$

b. $P(G \cup H)=P\left(s_{1}\right)+P\left(s_{2}\right)+P\left(s_{3}\right)+P\left(s_{5}\right)$

$$
\left\{s_{1}, s_{2}, s_{3}, s_{5}\right\} \quad \frac{1}{10}+\frac{1}{5}+\frac{1}{20}+\frac{1}{4}=\frac{12}{20}=0.60
$$

c. $P(I \cap G)=P(\boldsymbol{D})$

$$
\{\infty\}^{2}
$$

\square

Popper 5: How many quizzes are due this weekend?
a. 0
b. 1
c. 2
d. 3

