$$
6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720
$$

Math 1313 Section 5.4

Section 5.4: Permutations and Combinations

Definition: n-Factorial

For any natural number $n, n(n-1)(n-2) \ldots 3 \cdot 2 \cdot 1$
$0!=1$
A permutation is an arrangement of a specific set where the order in which the objects are arranged is important.
Rank, Tithe , Line up

Formula: $P(n, r)=\frac{n!}{(n-r)!}, \quad r \leq n$
where n is the number of distinct objects and r is the number of distinct objects taken r at a time.

Formula: Permutations of \mathbf{n} objects, not all distinct

Given a set of n objects in which n_{1} objects are alike and of one kind, n_{2} objects are alike and of another kind,..., and, finally, n_{r} objects are alike and of yet another kind so that

$$
n_{1}+n_{2}+\cdots+n_{r}=n
$$

then the number of permutations of these n objects taken n at a time is given by

$$
\frac{n!}{n_{1}!n_{2}!\ldots n_{r}!}
$$

A combination is an arrangement of a specific set where the order in which the objects are arranged is not important.

Formula: $C(n, r)=\frac{n!}{r!(n-r)!}, \quad r \leq n$
where n is the number of distinct objects and r is the number of distinct objects taken r at a time.
Example 1: You are in charge of seating 5 honored guests at the head table of a conference. How many seating arrangements are possible if the 8 chairs are on one side of the head table?

$r=5$

Math 1313 Section 5.4
Example 2: Find the number of ways 9 people can arrange themselves in a line for a group picture.

$$
n=9 \quad \operatorname{Perm}(9,9)=362,880
$$

$$
r=9
$$

Popper 3: You are in charge of seating 4 honored guests at the head table of a conference. How many seating arrangements are possible if the 10 chairs are on one side of the head table?
a. 5040
b. 210
c. 40

$$
\begin{gathered}
n=10 \\
r=4
\end{gathered}
$$

d. None of the above

Example 3: An organization has 30 members. In how many ways can the positions of president, vicepresident, secretary, treasurer, and historian be filled if not one person can fill more than one position?

$$
\begin{array}{ll}
n=30 & \text { Titles /Positions } \rightarrow \text { Perm } \\
r=5 & P(30,5)=17,100,720
\end{array}
$$

Example 4: An organizations needs to make up a social committee. If the organization has 25 members, in how many ways can a 10 person committee be made?

$$
\begin{array}{lrl}
n=25 & \text { Order is NOT important } \rightarrow \text { Combination } \\
r=10 & C(25,10)=3,268,760
\end{array}
$$

Example 5: If there are 40 contestants in a beauty pageant, in how many ways can the judges award 1 st prize and 2 nd prize if not one person can be awarded 1 st and 2 nd?

$$
\begin{aligned}
& n=40 \\
& r=2
\end{aligned}
$$

$$
\begin{aligned}
& \text { Rank } \rightarrow \text { Perm. } \\
& P(40,2)=1560
\end{aligned}
$$

Math 1313 Section 5.4
Example 6: How many permutations can be formed from all the letters in the word MISSISSIPPI.
$n=11$ number of che raters

IT
ST

$=\frac{11!}{(1!\cdot 4!\cdot 4!\cdot 2!)}$
$39916800 /(1 * 24 * 24 * 2)=34,650$

Popper 4: In a production of West Side Story, eight actors are considered for the male roles of Tony, Riff, and Bernardo. In how many ways can the director cast the male roles? What type of problem is this?
a. Combination
b. Permutation

Example 7: A museum of fine arts owns 8 paintings by a given artist. Another fine arts museum wishes to borrow 3 of these paintings for a special show. How many ways can 3 paintings be selected for shipment out of the 8 available?

$$
\begin{array}{ll}
n=8 & \text { Order does NOT matter } \\
r=3 & C(8,3)=56
\end{array}
$$

Example 8: A certain company has to transfer 4 of its 10 junior executives to a new location, how many ways can the 4 executives be chosen?

$$
\begin{array}{ll}
n=10 & \text { Order Not important } \\
r=4 & C(10,4)=210
\end{array}
$$

Example 9: A coin is tossed 5 times.
a. In how many outcomes do exactly 3 heads occur?

$$
r=3
$$

b. In how many outcomes do at least 4 heads occur? 4 heads, 5 heads

$$
\left\{\left(\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3} \mathrm{H}_{4} \mathrm{~T}\right),\left(\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3} \mathrm{~T} \mathrm{H}_{5}\right),\left(\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{TH}_{4} \mathrm{H}_{5}\right),\left(\mathrm{H}_{1} \mathrm{TH}_{3} \mathrm{H}_{4} \mathrm{H}_{5}\right),\left(\mathrm{TH}_{2} \mathrm{H}_{3} \mathrm{H}_{4} \mathrm{H}_{5}\right)\right\}
$$

$$
\begin{aligned}
& n=5 \\
& r=4 \\
& r_{2}=5
\end{aligned}
$$

$\left\{\left(\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3} \mathrm{H}_{4} \mathrm{H}_{5}\right)\right\}$ (1)

$$
C(5,4)+c(5,5)=5+1=6
$$

Example 10: A coin is tossed 20 times.
a. In how many outcomes do exactly 7 tails occur?

$$
c(20,7)=77,520
$$

b. In how many outcomes do at most 18 heads occur?

D Heads
1 Weal
2 Heads
\vdots
+18 Hacks
Answer

Max ot 18
complement : 19,20

$$
c(20,19)+c(20,20)=20+1=21
$$

Grand Tota/Universe $=2^{\text {tosses }}=2^{20}=1,044,576$

$$
\begin{aligned}
\text { Answer } & =\text { Total -Complement } \\
= & 1,048,576-21=1,044,555
\end{aligned}
$$

c. In how many outcomes do at least 19 heads occur?

19is Minima

$$
19,20 \text { Heads } \quad c(20,19)+c(20,20)=21
$$

d. In how many ways do at least 3 heads occur?

$$
\begin{gathered}
c(20,3) \\
c(20,4) \\
c(20,5) \\
\vdots \\
+\frac{c(20,20)}{\text { Answer }}
\end{gathered}
$$

3 is Minimum 3-20 Heels
Complement : $0,1,2$

$$
\begin{array}{rl}
4 & c(20,0) \\
1 & +c(20,1)+c(20,2) \\
1 & +20+190=211
\end{array}
$$

$$
\begin{aligned}
& =\text { Universe - Complement } \\
& =1,044,576-211 \\
& =1,046,365
\end{aligned}
$$

Example 11: A student belongs to a entertainment club. This month he must purchase 2 DVDs and 3 CDs. If there are 15 DVDs and 10 CDs to choose from, in how many ways can he choose his 5 purchases?

$$
n=15
$$

DuDs
CD

$$
c(15,2)
$$

$$
105
$$

$$
\begin{array}{cc}
n=10 & C(10,3) \\
r=3 & 120
\end{array}
$$

GMT.

$$
105 \cdot 120=12,600
$$

Example 12: A committee of 16 people, 7 women and 9 men, is forming a subcommittee that is to be made up of 6 women and 6 men. In how many ways can the subcommittee be formed?

$$
\begin{gathered}
\omega \\
c(7,6) \cdot c(9,6) \\
7 \cdot 84=586
\end{gathered}
$$

Example 13: A computer store receives a shipment of 35 laser printers, including 6 that are defective. Five of these printers are selected to be displayed in the store.

$$
6 \text { Def } 29 \text { Good }
$$

a. How many of these selections will contain no defective printers?

$$
\frac{6 D}{0} \quad \frac{296}{5} \quad C(6,0) \quad C(29,5)=118,755
$$

b. How many of these selections will contain 1 defective printer?

$$
\frac{6 D}{1} \quad \frac{296}{4} \quad C(6,1) C(29,4)=142,506
$$

c. How many of these selections will contain at least 1 defective printer?

Math 1313 Section 5.4
Example 14: A customer at a fruit stand picks a sample of 6 avocados at random from a crate containing 35 avocados of which 8 are rotten. In how many ways can the batch contain at least 2 rotten avocados?

$8 R$
2
3
4
5
6

$$
\begin{aligned}
& \text { complement } \\
& \frac{6 R}{0} \frac{276}{6} \\
& 1
\end{aligned}
$$

$$
\begin{array}{ccc}
\frac{6 R}{0} & \frac{276}{6} & C(8,0) * C(27,6) \\
1 & 5 & C(8,1) C(27,5)
\end{array}
$$

$$
296,010+645,840
$$

$$
=941,850
$$

$$
\text { Total }=(35,6)=1,623,160
$$

$$
\text { Answer }=1,623,160-941,65^{0}
$$

$$
=681,310
$$

Popper 5: An urn contains 17 red marbles and 18 blue marbles. 16 marbles are chosen. In how many ways can 6 red marbles be chosen?
a. 102
b. 541549008
c. 8008
d. 56134
e. 12376

