Math 1313Section 5.1The Universal set is the set of interest in a particular discussion.

A **Venn diagram** is a visual representation of sets. They look like:

Set Operations

Let A and B be two sets. The set of all elements that that belong to either A *or* B or both is called the **Union** of A and B (denoted $A \cup B$).

In set builder notation $A \cup B = \{x \mid x \in A \text{ or } x \in B \text{ or both}\}\$

Set Union in a Venn diagram looks like:

AUB = Anything Sheded

Math 1313 Section 5.1 ** 🗛 ND **

Let A and B be two sets. The set of all elements in common with both sets A and B is called the **Intersection** of A and B (denoted $A \cap B$).

In set-builder notation $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

Set Intersection in a Venn diagram looks like:

If $A \cap B = \emptyset$, then we say the intersection is the **null intersection** and that A and B are **disjoint**.

Let U be a universal set and $A \subseteq U$. The set of all elements in U that are not in A is called the

Complement of A. (denoted A^{C})

In set-builder notation $A^c = \{x \mid x \in U, x \notin A\}$

Set Complementation in a Venn diagram looks like:

Math 1313 Section 5.1

Set Operations

Let U be a universal set and A and B be subset of U

 $\emptyset^{c} = U$ $(\mathbf{A}^c)^c = \mathbf{A}$ $U^c = \emptyset$ $A \cup A^c = U$ $A \cap A^c = \emptyset$ $A \cap B = B \cap A$ $A \cup B = B \cup A$ To Reduce # of complements **DeMorgan's Laws** $A^{C} \cap B^{C} = (A \cup B)^{C}$ $A^C \cup B^C = (A \cap B)^C$ **Example 3:** Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ A={1,3,5,7,9} $B = \{2, 4, 6, 8, 10\}$ $C = \{1, 2, 4, 5, 8\}$ Find the given sets. 5 1,3,5,7,93 1 2 2,4,6,6,103 a. $(A \cup B)$ Merger = 31 - 103 22,4,6,9,103 1 51,2,4,5,83 b. (*B* ∩ *C*) In Lammon " = \$ 2,4,83 c. $(B \cap C^c)$ In Common = 36,103

Example 4: Let U denote the set of all employees at a certain Company. Let $T=\{x \in U | x \text{ likes to read Time magazine}\}$, $E=\{x \in U | x \text{ likes to read ESPN magazine}\}$ and $C=\{x \in U | x \text{ likes to read Car and Driver}\}$.

Part A. Describe the given set in words given statement in set notation.

i. T \bigcup C = the set of all employees at this company that

like to read Time DR Cart Driver ... DR Both

ii. (T^C C) U E = the set of all employees at this company that "AND" don't 1.ke to read Time "BUT" like to read Curt Driver; OR like to. reach ESPN

6

Math 1313 Section 5.1

Part B. Describe the given statement in set notation.

i. The set of all employees at this company that like ESPN and do not like Car and Driver.

EAC

ii. The set of all employees at this company that do not like Time, ESPN or Car Driver.

(TUEUC)

Another good example is example 8 and 9 in your book. Read through that example.

Example 5: Shade the portion of the Venn diagram that represents the given set.

Popper 3: Given the following sets, find $A \cap B^C$.

 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, A = \{3, 4, 5, 7, 9, 10\}$ and $B = \{2, 3, 5, 7\}$

- a. {2, 3, 4, 5, 7, 9, 10}
- b. $\{3, 5, 7\}$
- c. $\{1, 6, 8\}$
- d. {4, 9, 10}
- e. None of the above

Popper 4: Given the following Venn diagram, which regions make up $A^c \cap B^c$

- a. III and IV only.
- b. I, II and IV only.
- c. I only.

d. $A^{c} \cap (B \ U \ C)$

d. Ø

Math 1313 Section 5.1

Popper 5: Given the following Venn diagram, which regions make up $A \cup B^c$

- a. III and IV only.
- b. I, II and IV only.
- c. I only.
- d. Ø

