Math 1313 Section 5.1
The Universal set is the set of interest in a particular discussion.
A Venn diagram is a visual representation of sets.
They look like:

Set Operations

Let A and B be two sets. The set of all elements that that belong to either A or B or both is called the Union of A and B (denoted A \cup B).

In set builder notation $A \cup B=\{x \mid x \in A$ or $x \in B$ or both $\}$
Set Union in a Venn diagram looks like:

$A \cup B=$ Anything Shaded

Math 1313 Section 5.1 "A ND"
Let A and B be two sets. The set of all elements in common with both sets A and B is called the Intersection of A and B (denoted $A \cap B$).

In set-builder notation $A \cap B=\{x \mid x \in A$ and $x \in B\}$
Set Intersection in a Venn diagram looks like:

If $A \cap B=\emptyset$, then we say the intersection is the null intersection and that A and B are disjoint.

Let U be a universal set and $A \subseteq U$. The set of all elements in U that are not in A is called the
Complement of A. (denoted A^{C})
In set-builder notation $A^{c}=\{x \mid x \in U, x \notin A\}$
Set Complementation in a Venn diagram looks like:

$A^{C}=1 / / 1$

Math 1313 Section 5.1
Set Operations
Let U be a universal set and A and B be subset of U

$$
\begin{array}{lll}
U^{c}=\varnothing & \varnothing^{c}=U & \left(A^{c}\right)^{c}=A \\
A \cup A^{c}=U & A \cap A^{c}=\emptyset & \\
A \cup B=B \cup A & A \cap B=B \cap A
\end{array}
$$

DeMorgan's Laws
To Reduce \#t of complements

$$
\begin{aligned}
& A^{C} \cap B^{C}=(A \cup B)^{C} \\
& A^{C} \cup B^{C}=(A \cap B)^{C}
\end{aligned}
$$

Example 3: Let U=\{1,2,3,4,5,6,7,8,9,10\}

$$
\begin{aligned}
& \mathrm{A}=\{1,3,5,7,9\} \\
& \mathrm{B}=\{2,4,6,8,10\} \\
& \mathrm{C}=\{1,2,4,5,8\}
\end{aligned}
$$

Find the given sets.
$\underset{\pi}{\text { a. }(A \cup B)}\{1,3,5,7,9\} \bigcup\{2,4,6,8,10\}$ "OR? Merger

$$
=\{1-10\}
$$

b. $(B \cap C)$

Intersection
"In common"

$$
\begin{gathered}
\{2,4,6,\{, 10\} \cap\{1,2,4,5,8\} \\
=\{2,4,8\}
\end{gathered}
$$

c. $\left(B \cap C^{c}\right) \quad\{2,4,6,8,10\} \cap\{3,6,7,9,10\}$

$$
\begin{aligned}
& \text { In Common } \\
= & \{6,10\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Math } 1313 \text { Section } 5.1 \\
& \text { d. }(A \cup B \cup C)^{c}(\{1,3,5,7,9\} \cup\{2,4,6,8,10\} \cup\{1,2,4,5,8\})^{C} \\
& (\underbrace{1,2,3,4,5,6,7,8,10}_{\text {Universe }})^{C} \\
& \text { (univesc }^{\text {Universe }}{ }^{2}=\left\{\varnothing^{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { e. } A \cup\left(B^{c} \cap C\right) \\
& \text { S. } 1,3,5,7,9\} \cup(\{1,3,5,7,9\} \cap\{1,2,4,5,8\}) \\
& \{1,3,5,7,9\} \cup(1,5) \\
& =\{1,3,5,7,9\}
\end{aligned}
$$

f. $\left(A^{c} \cap B^{c}\right) \cup C$ Apply DeMorgaís Law

$$
\begin{aligned}
& (A \cup B)^{C} \cup C \\
& (1-10)^{C} \cup C \\
& \{\varnothing\} \cup C=C=\{1,2,4,5,8\}
\end{aligned}
$$

Example 4: Let U denote the set of all employees at a certain Company.
Let $\mathrm{T}=\{x \in \mathrm{U} \mid x$ likes to read Time magazine $\}, \mathrm{E}=\{x \in \mathrm{U} \mid x$ likes to read ESPN magazine $\}$ and $\mathrm{C}=\{x \in \mathrm{U} \mid x$ likes to read Car and Driver\}.

Part A. Describe the given set in words given statement in set notation.
i. $\mathrm{T} \cup \mathrm{C}=$ the set of all employees at this company that like to read Time OR Carìpriver ... OR Both
ii. $\left(T^{c} \cap C\right) \cup E=$ the set of all employees at this company that

$$
" A N D "
$$

don't like to rand Time "BuT" like to reed CariDriver j
OR like to. read ESPN

Part B. Describe the given statement in set notation.
i. The set of all employees at this company that like ESPN and do not like Car and Driver.

$$
E \cap C^{c}
$$

ii. The set of all employees at this company that do not like Time, ESPN or Car Driver.

$$
(T \cup E \cup C)^{c}
$$

Another good example is example 8 and 9 in your book. Read through that example.

Example 5: Shade the portion of the Venn diagram that represents the given set.

b. $A \cup(B \cap C)$

Popper 3: Given the following sets, find $A \cap B^{C}$.

$$
U=\{1,2,3,4,5,6,7,8,9,10\}, A=\{3,4,5,7,9,10\} \text { and } B=\{2,3,5,7\}
$$

a. $\{2,3,4,5,7,9,10\}$
b. $\{3,5,7\}$
c. $\{1,6,8\}$
d. $\{4,9,10\}$
e. None of the above

Popper 4: Given the following Venn diagram, which regions make up $A^{c} \cap B^{c}$

a. III and IV only.
b. I, II and IV only.
c. I only.
d. Ø
d. $A^{c} \cap(B U C) \quad$ Outside of A But part of Bore

Math 1313 Section 5.1
Popper 5: Given the following Venn diagram, which regions make up $A \cup B^{C}$

a. III and IV only.
b. I, II and IV only.
c. I only.
d. \emptyset

e. $\left(C^{c} \cup B^{c} \cup A^{c}\right)^{c}$

