Math 1313 Section 3.5
Example 2: Find the inverse of a 3×3 matrix.(Use Gauss-Jordan)

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
1 & 0 & -1 & -\frac{3}{5} & \frac{4}{5} & 0 \\
0 & 1 & 0 & \frac{2}{5} & -\frac{1}{5} & 0 \\
0 & 0 & 2 & \frac{-7}{5} & \frac{6}{5} & 1
\end{array}\right) \frac{1}{2} R_{3} \rightarrow R_{3}\left(\begin{array}{cccccc}
1 & 0 & -1 & -3 / 5 & 4 / 5 & 0 \\
0 & 1 & 0 & 2 / 5 & -1 / 5 & 0 \\
0 & 0 & 1 & -7 / 10 & 3 / 5 & 1 / 2
\end{array}\right) \\
& R_{3}+R_{1} \rightarrow R_{1} \\
& D 01 \frac{-7}{10} \quad \frac{3}{5} \quad \frac{1}{2} \\
& \begin{array}{llllll}
1 & 0 & -1 & -\frac{3}{5} & \frac{4}{5} & 0 \\
1 & 0 & 0 & \frac{-13}{10} & \frac{7}{5} & \frac{1}{2}
\end{array} \quad\left(\begin{array}{llll}
0 & 1 & 0 & \frac{2}{5} \\
0 & 0 & 1 & \frac{-1}{5} \\
0 & 0 & \frac{3}{10} & \frac{3}{5} \\
2
\end{array}\right)
\end{aligned}
$$

$$
C^{-1}=\left(\begin{array}{ccc}
\frac{-13}{10} & \frac{7}{5} & \frac{1}{2} \\
\frac{2}{5} & \frac{-1}{5} & 0 \\
\frac{-7}{10} & \frac{3}{5} & \frac{1}{2}
\end{array}\right)
$$

Math 1313 Section 3.5
Example 3: Find the inverse.

$$
\left(\begin{array}{ccc|ccc}
1 & 3 & -4 & 0 & -1 & 0 \\
0 & -10 & 18 & 1 & 4 & 0 \\
0 & 0 & 0 & \Rightarrow & \Rightarrow & \#
\end{array}\right)
$$

a No Inverse

Matrices That Have No Inverses
If there is a row to the left of the vertical line in the augmented matrix containing all zeros, then the matrix does not have an inverse. Example 3 has this problem and does not have an inverse.

$$
\begin{aligned}
& \left.B=\left(\begin{array}{ccc}
4 & 2 & 2 \\
-1 & -3 & 4 \\
3 & -1 & 6
\end{array}\right)\left(\begin{array}{ccc}
4 & 2 & 2 \\
-1 & -3 & 4 \\
3 & -1 & 6
\end{array}\right) 0 \begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
\hline
\end{array}\right) R_{1} \leftrightarrow R_{2}\left(\begin{array}{ccc|ccc}
-1 & -3 & 4 & 0 & 1 & 0 \\
4 & 2 & 2 & 1 & 0 & 0 \\
3 & -1 & 6 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Math 1313 Section 3.5
Formula for the Inverse of a 2X2 Matrix
Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Suppose $D=a d-b c$ is not equal to zero. Then A^{-1} exists and is given by

$$
A^{-1}=\frac{1}{D}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \quad \text { N Determinant }
$$

Example 4: Find the inverse of the following matrices.
a. $A=\left(\begin{array}{cc}-5 & 10 \\ 2 & 7\end{array}\right)$

$$
A^{-1}=\frac{1}{D}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)=\frac{1}{-55}\left(\begin{array}{cc}
7 & -10 \\
-2 & -5
\end{array}\right)
$$

$$
D=a d-b c
$$

$$
=-5(7)-10(2)
$$

$$
=-35-20
$$

$$
=-55
$$

b. $B=\left(\begin{array}{cc}8 & -4 \\ -4 & 2\end{array}\right)$

$$
\begin{aligned}
D & =a d-b c \\
& =8(2)-(-4)(-4) \\
& =10-16=0 \quad B^{-1} \text { does not exist }
\end{aligned}
$$

Question 3: Find the determinant of

$$
\left(\begin{array}{cc}
-3 & 10 \\
11 & 7
\end{array}\right)
$$

a. 89
b. -22
c. 3
d. -131
e. None of the above

Math 1313 Section 3.5
Matrix Representation
A system of linear equations may be written in a compact form with the help of matrices.
Example 5: Given the following system of equations, write it in matrix form.

$$
\begin{array}{cc}
\begin{array}{l}
2 x-4 y+z=6 \\
-3 x+6 y-5 z=-1 \\
x-3 y+7 z=0
\end{array} & A=\left(\begin{array}{ccc}
2 & -4 & 1 \\
-3 & 6 & -5 \\
1 & -3 & 7
\end{array}\right) X=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) B=\left(\begin{array}{c}
6 \\
-1 \\
0
\end{array}\right) \\
\begin{array}{ll}
\Delta X=B & A \\
(3 \times 3)(3 \times 1)=(3 \times 1) \\
3 \times 1
\end{array} & \left(\begin{array}{ccc}
2 & -4 & 1 \\
-3 & 6 & -5 \\
1 & -3 & 7
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
6 \\
-1 \\
0
\end{array}\right)
\end{array}
$$

Question 5: Find the inverse of

$$
\left(\begin{array}{cc}
-1 & 5 \\
1 & -4
\end{array}\right) \quad \text { Find Determinant }
$$

a. $\left(\begin{array}{cc}-4 & 1 \\ 5 & -1\end{array}\right)$ then use formula
b. $\left(\begin{array}{ll}-1 & -3 \\ -5 & -4\end{array}\right)$
c. $\left(\begin{array}{ll}-4 & -5 \\ -1 & -1\end{array}\right)$
d. $\left(\begin{array}{ll}4 & 5 \\ 1 & 1\end{array}\right)$
e. None of the above

Math 1313 Section 3.5
Example 6: Write each system of equations as a matrix equation and then solve the system using the inverse of the coefficient matrix.

$$
\begin{array}{rl}
\begin{array}{l}
2 x+3 y=5 \\
3 x+5 y=8
\end{array} & A=\left(\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right) X=\binom{x}{y} \quad B=\binom{5}{0} \\
A X=B & D=2(5)-3(3)=10-9=1 \\
\underbrace{A-A X}_{I}=A^{-1} \cdot B & A^{-1}=\frac{1}{1}\left(\begin{array}{cc}
5 & -3 \\
-3 & 2
\end{array}\right)=\left(\begin{array}{cc}
5 & -3 \\
-3 & 2
\end{array}\right) \\
X=A^{-1} \cdot B & X=\left(\begin{array}{cc}
5 & -3 \\
-3 & 2
\end{array}\right)\binom{5}{8}=\binom{25-24}{-5+16} \\
X & =\binom{1}{1} \\
x=1 \\
y=1
\end{array}
$$

Question 4: Given the linear system of equations. How would you set up using the coefficient matrix to solve the system?

$$
\begin{gathered}
x+4 y=3 \\
2 x+3 y=1
\end{gathered}
$$

a. $\quad X=\left(\begin{array}{cc}-3 & 4 \\ 2 & -1\end{array}\right)\binom{3}{1}$
b. $\quad X=\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)\binom{3}{1}$
c. $X=\left(\begin{array}{cc}1 & -\frac{1}{4} \\ -\frac{1}{2} & 3\end{array}\right)\binom{3}{1}$
d. $X=\left(\begin{array}{cc}\frac{1}{3} & -\frac{1}{4} \\ -\frac{1}{2} & 1\end{array}\right)\binom{3}{1}$
e. $X=\left(\begin{array}{cc}-\frac{3}{5} & \frac{4}{5} \\ \frac{2}{5} & -\frac{1}{5}\end{array}\right)\binom{3}{1}$

Math 1313 Section 3.5
The use of inverses to solve systems of equations is advantageous when we are required to solve more than one system of equations $\mathbf{A X}=\mathbf{B}$, involving the same coefficient matrix, \mathbf{A}, and different matrices of constants, \mathbf{B}.

Example 7: A performance theatre has 10,000 seats. The ticket prices are either $\$ 25$ or $\$ 35$, depending on the location of the seat. Assume every seat can be sold.
a. How many tickets of each type should be sold to bring in a return of $\$ 275,000$?
b. How many tickets of each type should be sold to bring in a return of $\$ 300,000$?

Let $x=$ number of $\$ 25$ tickets and $y=$ number of $\$ 35$ tickets
a)

$$
\begin{aligned}
& x+y=10,000 \\
& 25 x+35 y=275,000 \\
& D=a d-b c \\
& =1(35)-1(25) \\
& =10 \\
& X=A^{-1} \cdot B=\frac{1}{10}\left(\begin{array}{cc}
35 & -1 \\
-25 & 1
\end{array}\right)\binom{10000}{275000}=\frac{1}{10}\binom{350000-27500}{-250000+275000} \\
& =\frac{1}{10}\binom{75000}{25000}=\binom{7500}{2500} \quad \begin{array}{lll}
7500 & \text { of } & \$ 25 \\
2500 & \text { of } & \$ 35
\end{array} \\
& b x+y=10000 \\
& 25 x+35 y=300000 \quad B_{z}=\binom{10000}{300000} \\
& X^{-}=A^{-1} \cdot B_{2}=\frac{1}{10}\left(\begin{array}{cc}
35 & -1 \\
-25 & 1
\end{array}\right)\binom{10000}{300000} \\
& X=\binom{5000}{5000} \\
& \begin{array}{l}
5000 \text { of \& } 25 \\
5000 \text { of } \$ 35
\end{array}
\end{aligned}
$$

