Math 1313 Section 3.4
Section 3.4: Matrix Multiplication

$A \quad B$

$$
\begin{gathered}
(m \times n)(n \times p) \\
\begin{array}{c}
\left(\begin{array}{l}
\text { ans er of }
\end{array}\right. \\
\text { Answer }
\end{array}
\end{gathered}
$$

If A is a matrix of size $m x n$ and B is a matrix of size $n x p$ then the product $A B$ is defined and is a matrix of size $m \times p$.

So, two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix.

Example 1: Multiple the given matrices.

$$
\left[\begin{array}{l}
6 \\
5 \\
4
\end{array}\right] \text { is a } 3 \times 1 \text { matrix }
$$

$$
(1 \times 3)(3 \times 1)
$$

$\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$ is a 1×3 matrix
rows times column

$$
\left.\begin{array}{lll}
10 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
6 \\
5 \\
4
\end{array}\right]=\quad(1 \cdot 6+2 \cdot 5+3 \cdot 4)=[28]
$$

Here is how you multiply:

$$
\begin{aligned}
& \text { is how you multiply: } \\
& (2 \times 2)(2 \times 1)=2 \times 1 \\
& {\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
b_{11} \\
b_{21}
\end{array}\right]=\left[\begin{array}{l}
a_{11} \times b_{11}+a_{12} \times b_{21} \\
a_{21} \times b_{11}+a_{22} \times b_{21}
\end{array}\right] R_{2} \cdot C_{1}}
\end{aligned}
$$

Example 2: Multiply the given matrices.

$$
\begin{gathered}
R_{1} \cdot c_{1} \\
(-2)(-3)+4(5)=6+20 \\
R_{2} \cdot c_{1} \\
(-3)+0(5)
\end{gathered}=-3+0 \quad\binom{26}{-3}
$$

a. $\begin{gathered}{\left[\begin{array}{cc}-2 & 4 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}-3 \\ (2 \times 2) \\ 2\end{array}\right.} \\ =2 \times 1\end{gathered}$
b. $\left[\begin{array}{ccc}2 & 3 & -1 \\ 4 & 2 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 8 \\ 6\end{array}\right]$

$$
(2 \times 3)(3 \times 1)
$$

$$
\begin{gathered}
R_{1} \cdot C_{1} \\
2(1)+3(8)-1(6) \\
R_{2} \cdot L_{1} \\
4(1)+2(6)+2(6)
\end{gathered}=\binom{2+24-6}{4+16+12}=\binom{20}{32}
$$

$$
=2 \times 1
$$

From Popper 7
Math 1313 Section 3.4
Nosy 5: The following represent matrices and the dimension of each is also stated below.
A is a matrix of size 4 X 2
B is a matrix of size 3X5
C is a matrix of size 7X2
D is a matrix of size 5 X 4
E is a matrix of size 5 X 3
The product BD is defined.
a. True
b. False

Example 3: Mike and Sam have stock as follows:
BAD GM IBM TRW

$$
\mathbf{A}=\left[\begin{array}{cccc}
200 & 300 & 100 & 200 \\
100 & 200 & 400 & 0
\end{array}\right] \quad \text { Mike is this row one and Sam row two }
$$

At the close of trading on a certain day, the price $\$ /$ share (GM, IBM, BAC, respectively) are:

$$
\begin{aligned}
& B=\left[\begin{array}{l}
4 \times 1 \\
48 \\
98 \\
82
\end{array}\right] \quad\left(\begin{array}{cccc}
200 & 300 & 100 & 200 \\
100 & 200 & 400 & 0
\end{array}\right)\left(\begin{array}{l}
54 \\
48 \\
98 \\
82
\end{array}\right) \\
& 100\left(\begin{array}{llll}
2 & 3 & 1 & 2 \\
1 & 2 & 4 & 0
\end{array}\right)\left(\begin{array}{ll}
54 \\
4 & 8 \\
98 \\
88
\end{array}\right) \\
& A B=\binom{2(54)+3(48)+1(98)+2(82)}{1(54)+2(46)+4(98)+0(82)} \\
& 100\binom{108+144+98+164}{54+96+392+0} \\
& =100\binom{5,4}{542}=\underset{\$ 54200}{\$ 5 / 40 \mathrm{man}}
\end{aligned}
$$

Math 1313 Section 3.4
Example 4: Multiply the following matrices if possible.
Let $A=\left(\begin{array}{ccc}\left.\begin{array}{lll}1 & 3 & 0 \\ 2 & 4 & -1\end{array}\right)\end{array}, B=\left(\begin{array}{ccc}3 \times \mathbf{3} & 1 & 4 \\ 2 & 0 & 3 \\ 1 & 2 & -1\end{array}\right), C=\left(\begin{array}{cc}\mathbf{z} \times \mathbf{2} \\ -10 & 9 \\ -6 & 4\end{array}\right)\right.$, and $D=\left(\begin{array}{cc}-3 & 9 \\ 6 & 1 \\ 0 & 9 \\ 8 & 4\end{array}\right)$ compute, if possible:

$$
\begin{aligned}
& =2 \times 3 \\
& (2 \times 3)(3 \times 3)
\end{aligned}\left(\begin{array}{ccc}
R_{1} \cdot C_{1} & R_{1} \cdot C_{2} & R_{1} \cdot C_{3} \\
1(3)+3(2)+0(1) & 1(1)+3(0)+0(2) & 1(4)+3(3)+0(-1) \\
R_{2} \cdot C_{1} & R_{2} \cdot C_{2} & R_{2} \cdot C_{3} \\
2(3)+4(2)-1(1) & 2(1)+4(0)-1(2) & 2(4)+4(3)-1(-1)
\end{array}\right)
$$

$C D=(2 \times 2)(4 \times 2)$
Don't Match $C D$ is NOT Possible

$$
\left.\begin{array}{ccc}
\mathrm{CA} & (2 \times 2)(2 \times 3) & =2 \times 3 \\
R_{1} \cdot C_{1} & R_{1} \cdot C_{2} & R_{1} \cdot C_{3} \\
-10+16 & -30+30 & 0-9 \\
R_{2} \cdot C_{1} & R_{2} \cdot C_{2} & R_{2} \cdot C_{3} \\
-6+8 & -18+16 & 0-4
\end{array}\right)=\left(\begin{array}{ccc}
-10 & 9 \\
-6 & 4
\end{array}\right)\left(\begin{array}{ccc}
1 & 3 & 0 \\
2 & 4 & -1
\end{array}\right)
$$

Laws for Matrix Multiplication
If the products and sums are defined for the matrices A, B and C , then

1. $(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})$
2. $\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC}$

Note: In general, matrix multiplication is not commutative - that is, $A B \neq B A$.
Order of Multiplication

Example 5: If A and B are matrices we will look at the product AB and BA.
2×2

$$
A=\left[\begin{array}{cc}
-3 & 4 \\
2 & 0
\end{array}\right]
$$

$$
R \cdot C_{1}
$$

$$
B A=\begin{array}{cc}
{\left[\begin{array}{cc}
-2+0 & 2 \\
-1 & 2 \\
5 & 7
\end{array}\right]\left[\begin{array}{cc}
-3 & 4 \\
2 & 0
\end{array}\right]} \\
R_{1} \cdot C_{1} & R_{1} \cdot C_{2} \\
3+4 & -4+0 \\
R_{2} \cdot C_{1} & R_{2} \cdot C_{2} \\
-15+14 & 20+0
\end{array} \quad B A
$$

$$
B=\left[\begin{array}{cc}
-1 & 2 \\
5 & 7
\end{array}\right]
$$

$$
\begin{array}{cc}
R_{1} \cdot C_{1} & R_{1} \cdot C_{2} \\
3+20 & -6+28 \\
R_{2} \cdot C_{1} & R_{2} \cdot C_{2} \\
-2+0 & 4+0
\end{array}
$$

$A B$

$$
=\left(\begin{array}{ll}
23 & 22 \\
-2 & 4
\end{array}\right)
$$

Identity Matrix
The square matrix of size n having 1 s along the main diagonal and zeros elsewhere is called the identity matrix of size n.

$$
\begin{aligned}
& \text { The identity matrix of size } \mathrm{n} \text { is given by } I_{n}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
. & . & & . & & I_{1}=[1 \\
\cdot & \cdot & & & . & I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
\text { If A is a square matrix of size } \mathrm{n} \text {, then } I_{n} A=A I_{n}=A . & . & . & 1
\end{array}\right) \quad I_{2}=\left[\begin{array}{ll}
0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Math 1313 Section 3.4
Example 6: Given the following matrices,

$$
\begin{array}{ll}
X=\left(\begin{array}{ccc}
0 & 1 & -2 \\
4 & -2 & 1 \\
5 & 0 & -3
\end{array}\right), & Y=\left(\begin{array}{cccc}
2 & 3 & -4 & 1 \\
-5 & 2 & 1 & 6 \\
0 & -2 & 3 & -4
\end{array}\right) \\
(3 \times 3) & (3 \times 4)
\end{array}
$$

a. Is XY defined, if so what is the size?

$$
\text { Yes } ; \quad(3 \times 3)(3 \times 4)=(3 \times 4)
$$

b. Let $A=X Y$, what is a_{23} ?
R The element in zadrow 3 rd Cohen

$$
\begin{aligned}
& 4(-4)+(-2)(1)+1(3) \\
& -16-2+3 \\
& =-15
\end{aligned}
$$

Question
Aunaman 4: Given the following matrices, Let $\mathrm{X}=\mathrm{AB}$.

$$
\left.\begin{array}{l}
\quad \begin{array}{ccc}
\left(\begin{array}{ccc}
-2 & 4 & 5
\end{array}\right. & 0 \\
1 & -3 & 2
\end{array} \\
3
\end{array}\right)\left(\begin{array}{ccc}
9 & 3 & 2 \\
-7 & -1 & 3 \\
5 & 0 & -2 \\
1 & 2 & 6
\end{array}\right) .
$$

Find $\mathbf{x}_{2,2}$.
a. 12
b. 6
c. 43
d. 7

Math 1313 Section 3.4
Example 7: The following table displays the average grade in each category for an upper level honors course with 4 students.

	Test 1	Test 2	Test 3	Final Exam	Homework Avg	Quiz Avg
Mark	94	80	78	86	91	92
Ashley	80	88	90	85	76	100
Scott	100	75	88	82	84	88
Melissa	70	82	86	90	78	91

If each test is worth 16%, the final exam is worth 24%, the homework average is worth 12%, and the quiz average is worth 16%, what is each student's course average? Use a matrix to display the grades and another to display the percentages. Give the answer in the form of a matrix.
$\left(\begin{array}{cccccc}(4 \times 6) & 96 \\ 94 & 80 & 78 & 86 & 91 & 92 \\ 80 & 88 & 90 & 85 & 76 & 100 \\ 100 & 75 & 88 & 82 & 84 & 88 \\ 70 & 82 & 86 & 90 & 78 & 91\end{array}\right)\left(\begin{array}{l}6 \times 1 \\ 0.16 \\ 0.16 \\ 0.10 \\ 0.24 \\ 0.12 \\ 0.16\end{array}\right)=\left(\begin{array}{l}86.6 \\ 86.8 \\ 85.92 \\ 83.6\end{array}\right)$

Question 3

A is a matrix of size 4 X 2
B is a matrix of size 3 X 5
C is a matrix of size 7X2
D is a matrix of size 5 X 4
E is a matrix of size 5 X 3
The product CA is defined.
a. True
b. False

Math 1313 Section 3.5

Section 3.5: The Inverse of a Matrix

Over the set of real number we have what we call the multiplicative inverse or reciprocal. The multiplicative inverse of a number is a second number that when multiplied by the first number yields the multiplicative identity $\mathbf{1}$.

This is where the Identity Matrix comes in.
Let A be a square matrix of size n and another square matrix A^{-1} of size n such that $A A^{-1}=A^{-1} A=I_{n}$ is called the inverse of \mathbf{A}.

Note: Not every square matrix has an inverse. A matrix with no inverse is called singular.
Finding the Inverse of a Matrix
Given the nx n matrix A :

1. Adjoin the n x n identity matrix I to obtain the augmented matrix $(A \mid I)$
2. Use the Gauss-Jordan elimination method to reduce $(A \mid I)$ to the form $(I \mid B)$, if possible.

The matrix B is the inverse of A.

Example 1: Find the inverse, if possible and check:

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right] \quad\left(\begin{array}{cc|cc}
1 & 2 \\
\because-1 & 3 & 1 & 0 \\
\hdashline & 1
\end{array}\right) \frac{\begin{array}{ccc}
R_{1}+R_{2} & \rightarrow R_{2} \\
1 & 2 & 1 \\
-1 & 3 & 0
\end{array}}{\begin{array}{cccc}
1
\end{array}}\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 5 & 0 \\
0 & 1
\end{array}\right)
$$

$$
\frac{1}{5} R_{2} \rightarrow R_{2}\left(\begin{array}{cc|cc|ccc|cc}
1 & \cdots & 0 \\
0 & 1 & \frac{1}{5} & \frac{1}{5}
\end{array}\right) \begin{array}{cccc}
-2 & R_{2}+R_{1} & \rightarrow R_{1} \\
0 & -2 & -\frac{2}{5} & -\frac{2}{5} \\
1 & 2 & 1 & 0
\end{array}\left(\begin{array}{llll}
1 & 0 & \frac{3}{5} & -\frac{2}{5} \\
0 & 1 & \frac{1}{5} & \frac{1}{5}
\end{array}\right)
$$

$$
A^{-1}=\left(\begin{array}{cc}
\frac{3}{5} & \frac{-2}{5} \\
\frac{1}{5} & \frac{1}{5}
\end{array}\right)
$$

Math 1313 Section 3.5
Example 2: Find the inverse of a 3×3 matrix.(Use Gauss-Jordan)

$$
C=\left(\begin{array}{ccc}
1 & 4 & -1 \\
2 & 3 & -2 \\
-1 & 2 & 3
\end{array}\right)
$$

Math 1313 Section 3.5

Example 3: Find the inverse.

$$
B=\left(\begin{array}{ccc}
4 & 2 & 2 \\
-1 & -3 & 4 \\
3 & -1 & 6
\end{array}\right)
$$

Matrices That Have No Inverses

If there is a row to the left of the vertical line in the augmented matrix containing all zeros, then the matrix does not have an inverse. Example 3 has this problem and does not have an inverse.

