Math 1313 Section 3.2
Example 11: Solve the system of linear equations using the Gauss-Jordan elimination method.
More Variables than Equations

$$
\begin{gathered}
3 x+y-4 z=6 \\
-15 x-5 y+20 z=-36
\end{gathered}
$$

a. No Solution
b. Infinitely Many

$$
\left(\begin{array}{lll|l}
1 & 0 & 4 & 3 \\
0 & 1 & 0 & 2
\end{array}\right)
$$

Example 12: Solve the system of linear equations using the Gauss-Jordan elimination method.
$2 x-3 y=13$
$x+y=-1$
$x-4 y=14$

More Equation than Variables a One solution
b No Solution
c Infinitely

$$
\left(\begin{array}{cc|c}
2 & -3 & 13 \\
1 & 1 & -1 \\
1 & -4 & 14
\end{array}\right) R_{1} \leftrightarrow R_{2}\left(\begin{array}{cc|c|cc|c}
1 & 1 & -1 & -2 R_{1}+R_{2} \rightarrow R_{2} \\
2 & -3 & 13 & -2 & -2 & 2 \\
2 & -3 & 13 \\
14 & -4 & 14 & \begin{array}{cc}
1 & 1 \\
0 & -5 \\
\hline & 15
\end{array} & -5 & 15 \\
1 & -4 & 14
\end{array}\right)
$$

$$
\begin{array}{ll|l}
-R_{1}+R_{3} \rightarrow R_{3} \\
-1 & -1 & 1 \\
1 & -4 & 14 \\
\hline 0-5 & 15
\end{array}\left(\begin{array}{cc|c}
1 & 1 & -1 \\
0 & -5 & 15 \\
0 & -5 & 15
\end{array}\right) \xrightarrow{-R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{cc|c}
1 & 1 & -1 \\
0 & -5 & 15 \\
0 & 0 & 0
\end{array}\right)-\frac{1}{5} R_{2} \rightarrow R_{2}
$$

$$
\begin{array}{r}
\left(\begin{array}{cc|c}
1 & E_{1} & -1 \\
0 & 1 & -3 \\
0 & 0 & 0
\end{array}\right) \frac{\begin{array}{ccc}
-R_{2}+R_{1} \\
0 & -1 & 3 \\
1 & 1 & -1
\end{array}}{1} \begin{array}{r}
0 \\
2
\end{array} \\
0=0
\end{array}\left(\begin{array}{cc|c}
1 & 0 & 2 \\
0 & 1 & -3 \\
0 & 0 & 0
\end{array}\right)
$$

Question 1: When is Quiz 1 due?
a. February 6
b. February 7
c. February 8
d. At the end of the semester

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
3 & 1 & -4 & 6 \\
-15 & -5 & 20 & -36
\end{array}\right) \\
& 5 R_{1}+R_{3} \rightarrow R_{3} \\
& x-5 \quad x-5 \quad x-5 \quad x-6 \\
& \begin{array}{rcc}
15 & 5-20 & 30 \\
-15 & -5 & 20 \\
\hline 0 & 0 & 0
\end{array}
\end{aligned}
$$

Math 1313 Section 3.3
Section 3.3: Matrix Operations

Addition and Subtraction of Matrices

If A and B are two matrices of the same size,

1. $\mathrm{A}+\mathrm{B}$ is the matrix obtained by adding the corresponding entries in the two matrices.
2. $\mathrm{A}-\mathrm{B}$ is the matrix obtained by subtracting the corresponding entries in B from A .

Laws for Matrix Addition

If A, B, and C are matrices of the same dimension, then

1. $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
2. $(A+B)+C=A+(B+C)$

Example 1: Refer to the following matrices: If possible,

$$
\mathrm{A}=\left[\begin{array}{ccc}
8 & -3 & 1 \\
0 & -9 & -4 \\
9 & 6 & 7
\end{array}\right], \quad \mathrm{B}=\left[\begin{array}{ccc}
3 \times 3 & 2 \times 3 & -1 \\
-5 & 4 & -1 \\
10 & 15 & -2
\end{array}\right], \quad \mathrm{C}=\left[\begin{array}{ccc}
10 & -8 & 3 \\
5 & -4 & 2
\end{array}\right], \quad \mathrm{D}=\left[\begin{array}{lll}
4 & 1 & 3 \\
8 & 5 & 1
\end{array}\right]
$$

a. compute $\mathrm{A}-\mathrm{B}$

$8-(-5)$	$-3-4$	$1-(-1)$
$0-8$	$-9-4$	$-4-8$
$9-10$	$6-15$	$7-(-2)$

-8 \& -13 \& -12

-1 \& -9 \& 9\end{array}\right)\)
b. compute B + C. Not possible; Different Sizes
c. compute $\mathrm{D}+\mathrm{C}$.
$\left(\begin{array}{lll}4+10 & 1-8 & 3+3 \\ 8+5 & 5-4 & 1+2\end{array}\right)=\left(\begin{array}{ccc}14 & -7 & 6 \\ 13 & 1 & 3\end{array}\right)$

Scalar Multiplication
A scalar is a real number.
Scalar multiplication is the product of a scalar and a matrix. To perform scalar multiplication, each element in the matrix is multiplied by the scalar; hence, it "scales" the elements in the matrix

Example 2: Let $A=\left(\begin{array}{ll}\mathbf{1} & 2 \\ 3 & 4\end{array}\right), B=\left(\begin{array}{cc}\mathbf{2} \times \mathbf{2} \\ -1 & 4 \\ -7 & 9\end{array}\right)$, and $C=\left(\begin{array}{ccc}\mathbf{1} & 2 & 3 \\ -6 & -9 & 1\end{array}\right)$ find, if possible,
a. -3 C

$$
-3\left(\begin{array}{ccc}
1 & 2 & 3 \\
-6 & -9 & 1
\end{array}\right)=\left(\begin{array}{ccc}
-3 & -6 & -9 \\
18 & 27 & -3
\end{array}\right)
$$

b. $-2 B-A-2\left(\begin{array}{ll}-1 & 4 \\ -7 & 9\end{array}\right)-\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$

$$
\left(\begin{array}{cc}
2 & -8 \\
14 & -18
\end{array}\right)-\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{cc}
1 & -10 \\
11 & -22
\end{array}\right)
$$

c. 3B +2 C Not possible; Different sizes

Transpose of a Matrix rows \rightarrow Columns columns \rightarrow rows
If A is an $\mathrm{m} \times \mathrm{n}$ matrix with elements $a_{i j}$, then the transpose of A is the $\mathrm{n} \times \mathrm{m}$ matrix A^{T} with elements $a_{j i}$.

$$
\mathrm{A}=\left[\begin{array}{ccc}
2 & 5 & 50 \\
1 & 3 & 27 \\
16 & 45 & 1
\end{array}\right] \quad \mathrm{A}^{\mathrm{T}}=\left[\begin{array}{ccc}
2 & 1 & 16 \\
5 & 3 & 45 \\
50 & 27 & 1
\end{array}\right]
$$

Example 3: Given the following matrices, find their transpose.
a. $B=\left(\begin{array}{ccc}-3 & 0 & 6 \\ 10 & 100 & 3\end{array}\right)$

$$
\Delta_{3 \times 2}^{\top}=\left(\begin{array}{cc}
-3 & 10 \\
0 & 100 \\
6 & 3
\end{array}\right)
$$

Math 1313 Section 3.3
b. $\mathrm{D}=\left(\begin{array}{c}0 \\ -4 \\ 11 \\ -3\end{array}\right)$
$D^{\top}=\left(\begin{array}{llll}0 & -4 & 11 & -3\end{array}\right)$

Equality of Matrices

Two matrices are equal if they have the same dimension and their corresponding entries are equal.
Example 4: Solve the following matrix equation for $\mathrm{w}, \mathrm{x}, \mathrm{y}$, and z .
$\left[\begin{array}{cc}w+6 & x \\ y-2 & z\end{array}\right]=\left[\begin{array}{cc}-2 & 0 \\ 1 & 4\end{array}\right]$
$w+6=-2 \quad x=0$
$w=-8$

$$
\begin{gathered}
y-2=1 \\
y=3
\end{gathered} \quad z=4
$$

Example 5: Solve for the variables in the matrix equation.

$$
-\left[\begin{array}{cc}
1 & -2 \\
4 & 3
\end{array}\right]+9\left[\begin{array}{cc}
u-6 & 2 z+5 \\
y & -\frac{1}{3}
\end{array}\right]=-2\left[\begin{array}{cc}
3 & -8 \\
1 & v
\end{array}\right]
$$

$$
\left.\begin{array}{rl}
\left(\begin{array}{cc}
-1 & 2 \\
-4 & -3
\end{array}\right)+\left(\begin{array}{cc}
9 u-54 & 16 z+45 \\
9 y & -3
\end{array}\right)=\left(\begin{array}{cc}
-6 & 16 \\
-2 & -2 v
\end{array}\right) \\
-1+9 u-54=-6 & 2+18 z+45=16 \\
9 u-55=-6 & 18 z+47=16 \\
9 u=49 & 16 z=-31 \\
u=\frac{49}{9} & z=\frac{-31}{18} \\
-4+9 y=-2 & -3-3=-2 v \\
9 y=2 & -6
\end{array}\right)
$$

Math 1313 Section 3.3
Use the following matrices

$$
A=\left(\begin{array}{ccc}
-2 & 3 & 1 \\
7 & -4 & -5
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & 8 \\
3 & -4 \\
-7 & 2
\end{array}\right), \quad C=\left(\begin{array}{ccc}
5 & -2 & 3 \\
-4 & 0 & 1
\end{array}\right), \quad D=\left(\begin{array}{cc}
-2 & -5 \\
-3 & 7 \\
8 & -1
\end{array}\right)
$$

Popper 3: Is $3 A-2 C$ possible?
a. Yes
b. No

Popper 5: Let $X=-4 B+3 D$. Identify x_{21}
a. -15
b. 3
c. 0
d. -21
e. None of the above

