Math 1313 Section 3.2
Example 4: Solve the system of linear equations using the Gauss-Jordan elimination method.

$$
\begin{aligned}
& -\frac{1}{3} R_{2}+R_{1} \rightarrow R_{1} \\
& \begin{array}{ccc}
0 & -\frac{1}{3} & -\frac{4}{3} \\
1 & \frac{1}{3} & \frac{1}{3} \\
\hline 1 & 0 & -\frac{3}{3}=-1
\end{array} \\
& \left(\begin{array}{lll}
1 & 0 & -1 \\
0 & 1 & 4
\end{array}\right) \\
& \begin{array}{l}
x=-1 \\
y=4
\end{array}
\end{aligned}
$$

Question 5: Is the following matrix row reduced?

$$
\left(\begin{array}{cccc}
1 & 1 & 0 & -5 \\
0 & 0 & 1 & 3
\end{array}\right)
$$

a. Yes
b. No

Math 1313 Section 3.2
Example 5: Solve the system of linear equations using the Gauss-Jordan elimination method.

$$
\begin{aligned}
& \begin{array}{l}
y-8 z=9 \\
x-2 y+3 z=-3 \\
7-5 z=12
\end{array}\left(\begin{array}{ccc|c}
0 & 1 & -8 & 9 \\
1 & -2 & 3 & -3 \\
0 & 7 & -5 & 12
\end{array}\right) R_{1} \leftrightarrow R_{2}\left(\begin{array}{ccc|c}
1 & -2 & 3 & -3 \\
0 & 1 & -8 & 9 \\
0 & \therefore & -5 & 12
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lccc}
8 & R_{3}+R_{2}+R_{2} \\
0 & 0 & 8 & -8 \\
0 & 1 & -8 & 9 \\
0 & 1 & 0 & 1
\end{array}\left(\left.\begin{array}{lll|}
x & y & z \\
1 & 0 & 0 \\
z \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right\rvert\,-1\right) \\
& x=2 \\
& y=1 \\
& z=-1
\end{aligned}
$$

Math 1313 Section 3.2
Example 6: Solve the system of linear equations using the Gauss-Jordan elimination method.

$$
\begin{aligned}
& \left.\begin{array}{l}
\begin{array}{l}
2 x+4 y-6 z=38 \\
x+2 y+3 z=7 \\
3 x-4 y+4 z=-19
\end{array} \\
3 \\
1 \\
3
\end{array} \quad 2 \begin{array}{ccc|c}
2 & -4 & -6 & 38 \\
7
\end{array}\right) R_{1} \leftrightarrow R_{2}\left(\begin{array}{ccc|c}
1 & 2 & 3 & 7 \\
\therefore 2 & 4 & -6 & 38 \\
\hdashline 3 & -4 & 4 & -19
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 2 & 3 & 7 \\
0 & \vdots & 0 & -12 \\
0 & -10 & -5 & -40
\end{array}\right) R_{2} \leftrightarrow R_{3}\left(\begin{array}{ccc|c}
1 & 2 & 3 & 7 \\
0 & -10 & -5 & -40 \\
0 & 0 & -12 & 24
\end{array}\right) \xrightarrow{-\frac{1}{10} R_{2} \rightarrow R_{2}} \\
& \left(\begin{array}{ccc|c}
1 & \therefore 2 & 3 & 7 \\
0 & 1 & \frac{1}{2} & 4 \\
0 & 0 & -12 & 24
\end{array}\right) \begin{array}{ccc}
-2 R_{2}+R_{1} & \rightarrow R_{1} \\
0 & -2 & -1 \\
1 & 2 & 3 \\
1 & 0 & 2
\end{array} \quad\left(\begin{array}{ccc|c}
1 & 0 & 2 & -1 \\
0 & 1 & \frac{1}{2} & 4 \\
0 & 0 & \therefore-\frac{12}{2} & 24
\end{array}\right)-\frac{1}{12} R_{3} \rightarrow R_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ccc}
-\frac{1}{2} & R_{3}+R_{2} \\
0 & 0 & -\frac{1}{2} \\
0 & 1 & 1 \\
0 & 1 & 4 \\
0 & 0 & 5
\end{array} \quad\left(\begin{array}{ccc|c}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 5 \\
0 & 0 & 1 & -2
\end{array}\right) \\
& x=3 \\
& y=5 \\
& z=-2
\end{aligned}
$$

Math 1313 Section 3.2

Infinite Number of Solutions

Example 7: The following augmented matrix in row-reduced form is equivalent to the augmented matrix of a certain system of linear equations. Use this result to solve the system of equations.

Example 8: Solve the system of linear equations using the Gauss-Jordan elimination method.

$$
\left(\begin{array}{rrr|r}
1 & 2 & -3 & -2 \\
0 & -7 & 7 & 7 \\
0 & -1 & 1 & 1
\end{array}\right)
$$

$$
\rightarrow\left(\begin{array}{ccc|c}
1 & 2 & -3 & -2 \\
0 & -1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)-R_{z \rightarrow R}
$$

Multiples ot
Infinitely Many

Question 3: State the operation needed for the next appropriate step, in reducing the following

$$
\left(\begin{array}{ccc|c}
1 & 2 & -2 & 6 \\
3 & -4 & 0 & 8 \\
-2 & 4 & 5 & -6
\end{array}\right)
$$

a. $-\frac{\mathbf{1}}{\mathbf{4}} \boldsymbol{R}_{2} \rightarrow R_{2}$
b. $-3+R_{2} \rightarrow R_{2}$
c. $\frac{\mathbf{1}}{\mathbf{5}} R_{3} \rightarrow R_{3}$
d. $\mathbf{2 R} \boldsymbol{R}_{1}+\boldsymbol{R}_{\mathbf{3}} \rightarrow \boldsymbol{R}_{\mathbf{3}}$

$$
\begin{aligned}
& x+2 y-3 z=-2 \\
& 3 x-y-2 z=1 \\
& 2 x+3 y-5 z=-3 \\
& \left(\begin{array}{ccc|c}
1 & 2 & -3 & -2 \\
1 & -1 & -1 & -2 \\
-3 & 3 & -5 & 1 \\
-3
\end{array}\right) \frac{-3 R_{1}+R_{2}}{2} \begin{array}{ccc}
-3 & -6 & 9 \\
3 & -1 & -2 \\
0 & 1 \\
0 & -7 & 7 \\
\hline
\end{array}\left(\begin{array}{ccc|c}
1 & 2 & -3 & -2 \\
0 & -7 & 7 & 7 \\
\hdashline 2 & 3 & -5 & -3
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
x \\
\left(\begin{array}{ccc|c}
1 & 0 & -1 & 3 \\
0 & 1 & 5 & -2 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{array} \\
& \begin{array}{lll}
x-z=3 & x=z+3 \\
y+5 z=-2 & y=-5 z-2 & z=x-3 \\
0=0 & z=7 ? 7 & y=-5(x-3)-2 \\
& z & y=-5 x+15-2
\end{array} \\
& \text { Infinitely Many } \\
& \text { solutions }
\end{aligned}
$$

Math 1313 Section 3.2

A System of Equations That Has No Solution

In using the Gauss-Jordan elimination method the following equivalent matrix was obtained (note this matrix is not in row-reduced form, let's see why):

$$
\left(\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
0 & -4 & -4 & 1 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

Look at the last row. It reads: $0 x+0 y+0 z=-1$, in other words, $0=-1!!!$ This is never true. So the system is inconsistent and has no solution.

Systems with No Solution

If there is a row in the augmented matrix containing all zeros to the left of the vertical line and a nonzero entry to the right of the line, then the system of equations has no solution.

Example 9: Solve the system of linear equations using the Gauss-Jordan elimination method.
$2 x+3 y=2$
$x+3 y=-2$
$x-y=3$
$\left(\begin{array}{cc|c}2 & 3 & 2 \\ 1 & 3 & -2 \\ 1 & -1 & 3\end{array}\right)$
$R_{1} \leftrightarrow R_{2}\left(\begin{array}{cc|c}1 & 3 & -2 \\ \vdots & 3 & 2 \\ \hdashline 1 & -1 & 3\end{array}\right)$ $-R_{1}+R_{3} \rightarrow R_{3}$
$\left(\begin{array}{cc|c}1 & 3 & -2 \\ 0 & 0 & 6 \\ 0 & -4 & 5\end{array}\right) \quad \begin{aligned} & -\frac{1}{3} R_{2} \rightarrow R_{2} \\ & 0 \\ & 0\end{aligned} 1$

$$
\left(\begin{array}{ll|l}
1 & 3 & -2 \\
0 & 1 & -2 \\
0 & 0 & -3
\end{array}\right) \begin{aligned}
& 0=-3 \\
& F \text { allie }
\end{aligned}
$$

No Solution

Math 1313 Section 3.2
Example 10: Solve the system of linear equations using the Gauss-Jordan elimination method.

Example 11: Solve the system of linear equations using the Gauss-Jordan elimination method.

$$
\begin{gathered}
3 x+y-4 z=6 \\
-15 x-5 y+20 z=-36
\end{gathered}
$$

Example 12: Solve the system of linear equations using the Gauss-Jordan elimination method.

$$
\begin{gathered}
2 x-3 y=13 \\
x+y=-1 \\
x-4 y=14
\end{gathered}
$$

Math 1313 Section 3.2
Question 4: Solve the following system of linear equations using the Gauss-Jordan elimination method for the variable y .

$$
\begin{gathered}
-x+y=-1 \\
3 x-2 y=0 \\
2 x-y=4
\end{gathered}
$$

a. $y=1$
b. $y=3$
c. $y=z$, where z is any real number
d. $y=2$
e. No Solution

Math 1313 Section 3.3
Section 3.3: Matrix Operations

Addition and Subtraction of Matrices

If A and B are two matrices of the same size,

1. $\mathrm{A}+\mathrm{B}$ is the matrix obtained by adding the corresponding entries in the two matrices.
2. $\mathrm{A}-\mathrm{B}$ is the matrix obtained by subtracting the corresponding entries in B from A .

Laws for Matrix Addition

If A, B, and C are matrices of the same dimension, then

1. $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
2. $(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C})$

Example 1: Refer to the following matrices: If possible,

$$
\mathrm{A}=\left[\begin{array}{ccc}
8 & -3 & 1 \\
0 & -9 & -4 \\
9 & 6 & 7
\end{array}\right], \quad \mathrm{B}=\left[\begin{array}{ccc}
-5 & 4 & -1 \\
8 & 4 & 8 \\
10 & 15 & -2
\end{array}\right], \quad \mathrm{C}=\left[\begin{array}{ccc}
10 & -8 & 3 \\
5 & -4 & 2
\end{array}\right], \quad \mathrm{D}=\left[\begin{array}{lll}
4 & 1 & 3 \\
8 & 5 & 1
\end{array}\right]
$$

a. compute $\mathrm{A}-\mathrm{B}$
b. compute $\mathrm{B}+\mathrm{C}$.
c. compute $\mathrm{D}+\mathrm{C}$.

Math 1313 Section 3.3

Scalar Multiplication

A scalar is a real number.
Scalar multiplication is the product of a scalar and a matrix. To perform scalar multiplication, each element in the matrix is multiplied by the scalar; hence, it "scales" the elements in the matrix

Example 2: Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right), B=\left(\begin{array}{ll}-1 & 4 \\ -7 & 9\end{array}\right)$, and $C=\left(\begin{array}{ccc}1 & 2 & 3 \\ -6 & -9 & 1\end{array}\right)$ find, if possible,
a. -3 C
b. $-2 \mathrm{~B}-\mathrm{A}$
c. $3 \mathrm{~B}+2 \mathrm{C}$

Transpose of a Matrix

If A is an mxn matrix with elements $a_{i j}$, then the transpose of A is the nxm matrix A^{T} with elements $a_{j i}$.

$$
A=\left[\begin{array}{ccc}
2 & 5 & 50 \\
1 & 3 & 27 \\
16 & 45 & 1
\end{array}\right] \quad A^{T}=\left[\begin{array}{ccc}
2 & 1 & 16 \\
5 & 3 & 45 \\
50 & 27 & 1
\end{array}\right]
$$

Example 3: Given the following matrices, find their transpose.
a. $B=\left(\begin{array}{ccc}-3 & 0 & 6 \\ 10 & 100 & 3\end{array}\right)$

Math 1313 Section 3.3
b. $\mathrm{D}=\left(\begin{array}{c}0 \\ -4 \\ 11 \\ -3\end{array}\right)$

Equality of Matrices

Two matrices are equal if they have the same dimension and their corresponding entries are equal.
Example 4: Solve the following matrix equation for $\mathrm{w}, \mathrm{x}, \mathrm{y}$, and z .
$\left[\begin{array}{ll}w+6 & x \\ y-2 & z\end{array}\right]=\left[\begin{array}{cc}-2 & 0 \\ 1 & 4\end{array}\right]$

Example 5: Solve for the variables in the matrix equation.

$$
-\left[\begin{array}{cc}
1 & -2 \\
4 & 3
\end{array}\right]+9\left[\begin{array}{cc}
u-6 & 2 z+5 \\
y & -\frac{1}{3}
\end{array}\right]=-2\left[\begin{array}{cc}
3 & -8 \\
1 & v
\end{array}\right]
$$

