Math 1313 Section 2.2
Example 3: The officers of a high school senior class are planning to rent buses and vans for a class trip. Each bus can transport 40 students, requires 3 chaperones, and costs $\$ 1,200$ to rent. Each van can transport 8 students, requires 1 chaperone, and cost $\$ 100$ to rent. The officers must plan to accommodate at least 400 students. Since only 36 parents have volunteered to serve as chaperones, the officers must plan to use at most 36 chaperones. How many vehicles of each type should the officers rent in order to minimize the transportation costs? What are the minimal transportation costs?
a. Define your variables.

b. Construct and fill in a table.

Chaperones
Cost

3
1200

8
1
\leq
36
100
c. State the Linear Programming Problem. Do Not Solve.

Min $c=1200 x+100 y$
st.

$$
\begin{gathered}
40 x+4 y \geq 400 \\
3 x+y \leq 36 \\
x, y \geq 0
\end{gathered}
$$

Math 1313 Section 2.2
Example 4: A 4-H member raises only geese and pigs. She wants to raise no more than 16 animals. It costs her $\$ 500$ to raise a goose and $\$ 1500$ to raise a pig. And she has $\$ 18,000$ available for the project. The 4-H member wishes to maximize her profit. Each goose produces $\$ 600$ in the profit and each pig $\$$ 2000 profit. How many of each animal should she raise to maximize her profit?
a. Define your variables.

$$
x-\# \text { of geese } y \text { - } t \text { of pigs }
$$

b. Construct and fill in a table.

Animals	1	1	≤ 16
Money	500	1500	≤ 18000

Profit 6002000
c. State the Linear Programming Problem and Solve $E \times 4$ from 2.1

Raise O Geese $\hat{1} 12$ pigs
for a profit ot \$24000

lUR

A matrix is an ordered rectangular array of numbers, letters, symbols or algebraic expressions. A matrix with m rows and n columns has size or dimension $m \times n$.

The real numbers that make up the matrix are called entries or elements of the matrix. The entry in the i th row and j th column is denoted by $a_{i j}$

A matrix with only one column or one row is called a column matrix (or column vector) or row matrix (or row vector), respectively.

Example 1: Given $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & 7 & 7 \\ -5 & 3 & 9 \\ 0 & -10 & 20 \\ 1 & -3 & -11\end{array}\right) \mathbf{1} \mathbf{2}$
a. what is the dimension of A ? 4 rows $\times 3$ column 4×3
b. identify a_{43}. $4^{\text {th }}$ row, 3 rd Colum a $=-11$

Systems of Linear Equations in Matrix Form

In order to write a system of linear equations in matrix form, first make sure the like variables occur in the same column. Then we'll leave out the variables of the system and simply use the coefficients and constants to write the matrix form.

Given the following system of equations:
$\left.\begin{array}{rl}2 x+4 y+6 z & =\begin{array}{l}22 \\ 3 x+8 y+5 z\end{array} \\ -x+y+27 & =2\end{array}\right)$
The coefficient matrix is:

The constant matrix is: $\left(\begin{array}{c}22 \\ 27 \\ 2\end{array}\right)$

Math 1313 Section 3.1 \times oz Dashal/solid $={ }^{\circ}$ Equal sign
The augmented matrix is: $\left(\begin{array}{ccc|c}2 & 4 & 6 \mid 22 \\ 3 & 8 & 5 \mid & 27 \\ -1 & 1 & 2 \mid & 2\end{array}\right)$
Example 2: Give the coefficient, constant and augmented matrix for the system of equations.

$$
\begin{aligned}
& 2 x-4 y=15 \\
& \times \quad \text { y } \quad \text { _ } \quad x+y-3 z=-8 \\
& \text { coefficient }=\left(\begin{array}{ccc}
2 & -4 & 0 \\
0 & -3 & 2 \\
1 & 1 & -3
\end{array}\right) \quad \text { constant }=\left(\begin{array}{c}
15 \\
9 \\
-8
\end{array}\right) \\
& \text { Question 2: Give the following matrix, identify } s_{3,2}
\end{aligned}
$$

$$
S=\left(\begin{array}{cccc}
-7 & 2 & -4 & 4 \\
0 & 1 & 3 & -3 \\
-1 & 5 & -2 & 2 \\
8 & 7 & 0 & 6
\end{array}\right)
$$

a. 3
b. -3
c. 4
d. 5
e. None of the Above

Math 1313 Section 3.2

Section 3.2: Solving Systems of Linear Equations Using Matrices

As you may recall from College Algebra or Section 1.3, you can solve a system of linear equations in two variables easily by applying the substitution or addition method. Since these methods become tedious when solving a large system of equations, a suitable technique for solving such systems of linear equations will consist of Row Operations. The sequence of operations on a system of linear equations are referred to equivalent systems, which have the same solution set.

Row Operations

1. Interchange any two rows.
$\left[\begin{array}{ccc}2 & -1 & 3 \\ 1 & 3 & 5\end{array}\right] \quad R_{1} \leftrightarrow R_{2} \quad\left[\begin{array}{ccc}1 & 3 & 5 \\ 2 & -1 & 3\end{array}\right]$
2. Replace any row by a nonzero constant multiple of itself. (renter a 1

3. Replace any row by the sum of that row and a constant multiple of any other row.

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
1 & 3 & 5 \\
2 & -1 & 3
\end{array}\right] \quad-2 R_{1}+R_{2} \rightarrow R_{2}\left[\begin{array}{cc|c}
1 & 3 & 5 \\
0 & -7 & -7
\end{array}\right]+\underbrace{-2\left(\begin{array}{lll}
1 & 3 & 5
\end{array}\right) \Rightarrow+\begin{array}{ccc}
-2 & -6 & -10 \\
0 & -1 & 3
\end{array}}_{\text {New } R_{2}}} \\
& \text { Reduced Form }
\end{aligned}
$$

Row Reduced Form

An mxn augmented matrix is in row-reduced form if it satisfies the following conditions:

1. Each row consisting entirely of zeros lies below any other row having nonzero entries.

$$
\left[\begin{array}{cc|c}
1 & 0 & -3 \\
0 & 0 & 0 \\
0 & 1 & -2
\end{array}\right] \quad \text { the correct row-reduced form }\left[\begin{array}{cc|c}
1 & 0 & -3 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]
$$

2. The first nonzero entry in each row is 1 (called a leading 1).

$$
\left[\begin{array}{ccc|c}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -5
\end{array}\right] \begin{gathered}
\frac{1}{2} R_{2} \rightarrow R_{2} \\
\text { the correct row-reduced form }
\end{gathered}\left[\begin{array}{lll|c}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 3 / 2 \\
0 & 0 & 1 & -5
\end{array}\right]
$$

3. If a column contains a leading 1 , then the other entries in that column are zeros.

Math 1313 Section 3.2

$$
\left.\left[\begin{array}{ccc|c}
1 & 2 & -2 & 2 \\
0 & 0 & 1 & -1
\end{array}\right] \begin{array}{c}
2 R_{2}+R_{1} \rightarrow R_{1} \\
\text { the correct row-reduced f } f\left[\begin{array}{llll}
\\
0 & 0 & 2 & -2 \\
1 & 2 & -2 & 3
\end{array}\right. \\
\begin{array}{llll}
1 & 2 & 0 & 1
\end{array}
\end{array}\right]\left[\begin{array}{lll|l}
1 & 2 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

4. In any two successive (nonzero) rows, the leading 1 in the lower row lies to the right of the leading 1 in the upper row.

$$
\left.\left[\begin{array}{cc|c}
0 & 1 & -2 \\
1 & 0 & 3
\end{array}\right] \text { the correct row-reduced form } \quad \begin{array}{cc|c}
\boldsymbol{R}_{\mathbf{1}} \leftrightarrow \boldsymbol{R}_{\mathbf{2}} \\
0 & 0 & 3 \\
\hline 2
\end{array}\right]
$$

Example 1: Determine which of the following matrices are in row-reduced form. If a matrix is not in row-reduced form, state which condition is violated.
a. $\left(\begin{array}{ccc|c}1 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2\end{array}\right)$ Yes
d.

Yes
b. $\left(\begin{array}{ccc|c}1 & \ddot{2} & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \quad \begin{aligned} & \text { No should } \\ & 2 \text { be zero }\end{aligned}$
e. $\left(\begin{array}{lll|l}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 2 & 6 \\ \longrightarrow & 1\end{array}\right)$
No: Needs
toby a one
c. $\left(\begin{array}{lll|l}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 2\end{array}\right) \begin{aligned} & \left.\text { NO } \begin{array}{l}\text { fall of } \\ \text { Zeros, should } \\ \text { zen }\end{array}\right)\end{aligned}$
f. $\left(\begin{array}{ll|l}0 & 1 & 1 \\ 1 & 0 & 5\end{array}\right) \quad$ NO
wrong direction
be ot Bottom

Math 1313 Section 3.2
Popper 4
Question 4: Is the following matrix in row reduced form.

$$
\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

a. Yes
b. No

The Gauss-Jordan Elimination Method

1. Write the augmented matrix corresponding to the linear system.
2. Use row operations to write the augmented matrix in row reduced form. If at any point a row in the matrix contains zeros to the left of the vertical line and a nonzero number to its right, stop the process, as the problem has no solution.
3. Read off the solutions).

There are three types of possibilities after doing this process.

Unique Solution

Example 2: The following augmented matrix in row-reduced form is equivalent to the augmented matrix of a certain system of linear equations. Use this result to solve the system of equations.

$\left.\begin{array}{ll}x & y \\ z & \\ \left(\left.\begin{array}{ll|c}1 & 0 & 0 \\ 0 \\ 0 & 1 & 0\end{array} \right\rvert\,-7\right. \\ 0 & 0\end{array} 1-1.3\right) \quad \begin{aligned} & x+0+0=2 \\ & 0+y+0=-7 \\ & 0+0+z=3\end{aligned}$

$$
\begin{aligned}
& x=2 \\
& y=-7 \\
& z=3
\end{aligned}
$$

Math 1313 Section 3.2

Example 3: Solve the system of linear equations using the Gauss-Jordan elimination method.

$-1 \cdot R_{2} \rightarrow R_{2}$

Example 4: Solve the system of linear equations using the Gauss-Jordan elimination method.

$$
\begin{aligned}
& 3 x+y=1 \\
& -7 x-2 y=-1
\end{aligned}
$$

