Math 1313 Section 7.5

Section 7.5: The Normal Distribution

A random variable that may take on infinitely many values is called a continuous random variable.

The probability distribution associated with this type of random variable is called a **continuous probability distribution.**

A continuous probability distribution is defined by a function f called the **probability density function**. The function has domain equal to those values the continuous random variable assumes.

The **probability density function** has the following properties:

- 1. f(x) > 0 for all values of x.
- 2. The area between the curve and the x axis is 1.

The probability that the random variable X associated with a given probability density function assumes a value in an interval a < x < b is given by the **area of the region between the graph of f and the x-axis from x = a to x = b.**

Here is a picture:

This value is P(a < X < b)

Note: $P(a \le X \le b) = P(a \le X \le b) = P(a \le X \le b) = P(a < X < b)$, since the area under one point is 0.

Math 1313 Section 7.5

Normal Distributions.

For these types of distributions:

- 1. The graph is a bell-shaped curve.
- 2. μ and σ each have the same meaning (mean and standard deviation)
- 3. μ determines the location of the center of the curve.
- 4. σ determines the sharpness or flatness of the curve.

Also, the normal curve has the following characteristics:

- 1. The curve has peak at $x = \mu$.
- 2. The curve is symmetric with respect to the vertical line $x = \mu$.
- 3. The curve always lies above the *x*-axis but approaches the *x*-axis as *x* extends indefinitely in either direction.
- 4. The area under the curve is 1.
- 5. For any normal curve, 68.27% of the area under the curve lies within 1 standard deviation of the mean (i.e. between $\mu \sigma$ and $\mu + \sigma$), 95.45% of the area lies within 2 standard deviations of the mean, and 99.73% of the area lies within 3 standard deviations of the mean.

Since any normal curve can be transformed into any other normal curve we will study, from here on, the **Standard Normal Curve**.

The **Standard Normal Curve** has $\mu = 0$ and $\sigma = 1$.

The corresponding distribution and random variable are called **the Standard Normal Distribution** and the **Standard Normal Random Variable**, respectively.

The Standard Normal Variable will commonly be denoted Z.

P(Z(Nurbes)

Math 1313 Section 7.5

The area of the region under the standard normal curve to the left of some value z, i.e. P(Z < z) or $P(Z \le z)$, is calculated for us in **Table I**.

Example 1: Let *Z* be the standard normal variable find the values of:

a. P(Z < -1.91)

= 0.0281

b. P(Z < 0.44)

= 0.6700

c. P(Z > 0.50)

Compliant

25

= 0.3045

d. P(-1.65 < Z < 2.02)

P(Z<2.02) - P(Z<-1.65)

0.9268

e. P(1 < Z < 2.47)

ア(そく2.47) - ア(そく)

0.9932 - 0.4413

0.1519

Math 1313 Section 7.5

Popper 3: P(Z > 0.22)

- a. 0.6578
- b. 0.2879
- c. 0.4129
- d. 0.5488
- e. 0.7602

Example 2: Let Z be the standard normal variable. Find the value of z if z satisfies:

c.
$$P(Z < -z) = 0.6950$$

d.
$$P(-z < Z < z) = 0.7888$$

Popper 4: Let Z be the standard normal variable. Find the value of z if z satisfies P(Z > z) = 0.7054.

チェル4て

- a. 0.46
- b. -0.46
- c. -0.54
- d. 1.24
- e. None of the above

When given a normal distribution in which $\mu \neq 0$ and $\sigma \neq 1$, we can transform the normal curve to the standard normal curve by doing whichever of the following applies.

$$P(X < b) = P\left(Z < \frac{b - \mu}{\sigma}\right)$$

$$P(X > a) = P\left(Z > \frac{a - \mu}{\sigma}\right)$$

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$

Example 3: Suppose X is a normal variable with
$$\mu = 80$$
 and $\sigma = 10$. Find:
a. $P(X < 100) \Rightarrow P\left(\frac{7}{7} < \frac{100 - 60}{100}\right)$

$$= P\left(\frac{7}{7} < \frac{30}{100}\right)$$

Math 1313 Section 7.5
b.
$$P(X > 65) \Rightarrow P(Z > \frac{15}{10})$$

= $P(Z > -1.50) = P(Z < 1.50) = 0.9332$
c. $P(70 < X < 95) \Rightarrow P(\frac{70 - 40}{10} < Z < \frac{95 - 40}{10})$
= $P(-1.00 < Z < 1.50)$
= $P(Z < 1.50) - P(Z < -1.00)$
= 0.9332 - 0.1547

Popper 5: Suppose X is a normal random variable with mean of 560 and standard deviation 40. Find the probability of more than 510. $P(\times > 5)$

0.7745

- a. 0.1248
- b. 0.8944
- c. 0.6514
- d. 0.3486
- e. None of the above