Math 1313 Section 7.2
Section 7.2: Expected Value and Odds
The average (mean) of n numbers, $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ is \bar{x}.
Formula: $\bar{x}=\frac{\mathbf{x}_{1}+\mathbf{x}_{2}+\ldots+x_{n}}{n}$

Expected Value of a Random Variable X
Let X denote a random variable that assumes the values $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ with associated probabilities p_{1} p_{2}, \ldots, p_{n}, respectively. The expected value of $X, E(X)$, is given by

$$
E(X)=x_{1} p_{1}+x_{2} p_{2}+\cdots+x_{n} p_{n}=\mu \quad \text { \& } M_{u}
$$

Example 1: In this Finite Math class Test 1 is worth 8%, each of the 2- 4 tests are worth 14%, the quiz average is worth 12%, the homework average is worth 10%, the popper average is worth 10%, and the final exam is worth 18%. If your grades are as follows:

Test $1-82$, Test $2-86$, Test $3-68$, Test $4-90$, Quiz Average -100 , Homework Average -91 , Popper Average - 100, and Final Exam - 95.

What is your class average (expected value)?

$$
\begin{aligned}
E(X) & =x_{1} p_{1}+x_{2} p_{2}+\ldots+x_{n} p_{n} \\
= & 82(0.08)+86(0.14)+68(0.14)+90(0.14)+100(0.12)+91(0.10)+100(0.10) \\
& +95(0.14) \\
& =88.92
\end{aligned}
$$

Example 2: A box contains 15 quarters, 7 dimes, 5 nickels, and 8 pennies. A coin is drawn at random from the box. What is the mean of the value of the draw?

$$
E(x)
$$

$$
\begin{aligned}
E(x) & =x_{1} p_{1}+x_{2} p_{2}+x_{3} p_{3}+x_{4} p_{4} \\
& =0.25\left(\frac{15}{35}\right)+0.10\left(\frac{7}{35}\right)+0.05\left(\frac{5}{35}\right)+0.01\left(\frac{q}{35}\right) \\
& =0.1366
\end{aligned}
$$

Math 1313 Section 7.2

Example 3: An investor is interested in purchasing an apartment building containing six apartments. The current owner provides the following probability distribution indicating the probability that the given number of apartments will be rented during a given month.

Number of Rented Apt	0	1	2	3	4	5	6
Probability	0.02	0.08	0.10	0.12	0.15	0.25	0.28

a. Find the number of apartments the investor could expect to be rented during a given month?

$$
\begin{aligned}
& E(x)=x_{1} p_{1}+x_{2} p_{2}+\ldots+x_{n} p_{n} \\
&=0(0.02)+1(0.06)+2(0.10)+\ldots+6(0.28) \\
&= 4.17
\end{aligned}
$$

b. If the monthly rent for each apartment is $\$ 799$, how much could the investor expect to collect in rent for the whole building during a given month?

$$
\begin{gathered}
\text { \# of Arertreat } \times \text { Rat } \\
4.17 \times 799 \\
=\$ 3331.83
\end{gathered}
$$

Popper 3: A box contains 17 nickels, 11 dimes and 19 pennies. You pick a coin at random from the box, what is the average value of the draw?
a. 0.0214
b. 0.0455
c. 0.1567
d. 0.7133

Math 1313 Section 7.2
Odds in Favor of and Odds Against
If $\mathrm{P}(\mathrm{E})$ is the probability of an even E occurring, then

1. The odds in favor of E occurring are

$$
\frac{P(E)}{P\left(E^{c}\right)}
$$

2. The odds against E occurring are

$$
\frac{P\left(E^{c}\right)}{P(E)}
$$

Note: Odds are expressed as ratios of whole numbers.

$$
a: b
$$

Probability of an Event (Given the Odds)
If the odds in favor of an event E occurring are a to b, then the probability of E occurring is

$$
P(E)=\frac{a}{a+b}=\text { decianal }
$$

Example 4: The probability that the race horse Galloping George will win a race is 0.65 . $P($ win $)=0.65 \quad P($ toss $)=0.35$
a. What are the odds in favor of George winning?

$$
\frac{P(\text { win })}{P(l o s)}=\frac{0.65}{0.35}=\frac{65}{35}=\frac{13}{7}
$$

\square
b. What are the odds against George winning?

$$
\frac{P(\operatorname{Los} 5)}{P(\omega i n)}=\frac{0.35}{0.65}=\frac{35}{65}=\frac{7}{13}
$$

\square odd of
a Loss
c. What is the probability that George will lose?

$$
\begin{aligned}
& \text { Using odd } \\
& \text { of L Lose }
\end{aligned} \quad \rho(\text { Loss })=\frac{7}{7+13}=\frac{7}{20}=0.35
$$

Example 5: The odds against Laura winning a certain raffle are 99:1. What is the probability that Laura will not win the raffle?

$$
P(\text { Notwimis })=\frac{99}{99+1}=0.99
$$

Example 6: The odds that it will rain on Thursday are 3 to 5 . What is the probability that it will rain?

$$
P(\text { rain })=\frac{3}{3+5}=\frac{3}{6}=0.375
$$

Example 7: The probability that I will not finish my paper this week is 85%. What are the odds I will finish mv paper?
$P\left(N_{0}\right.$ Paper $)=0.85$
$P($ Paper $)=0.15$

$$
\begin{aligned}
& \frac{P(\text { Paper })}{P\left(N_{0} P_{\text {apes }}\right)}=\frac{0.15}{0.45}=\frac{15}{45} \\
= & \frac{3}{17}
\end{aligned}
$$

Popper 4: The odds that a child entering a convenience store with her parents will not get a package of cupcakes are 1 to 11 . What is the probability she will get a package of cupcakes?
a. 0.0833
b. 0.0909
c. 0.1236
d. 0.9167

Math 1313 Section 7.3

Section 7.3: Variance and Standard Deviation

The Variance of a random variable X is the measure of degree of dispersion, or spread, of a probability distribution about its mean (i.e. how much on average each of the values of X deviates from the mean).

Note: A probability distribution with a small (large) spread about its mean will have a small (large) variance.

Variance of a Random Variable \mathbf{X}

Suppose a random variable has the probability distribution

x	x_{1}	x_{2}	\ldots	x_{n}
$P(X=x)$	p_{1}	p_{2}	\ldots	p_{n}

and expected value $E(X)=\mu$. Then the variance of the random variable X is

$$
\operatorname{Var}(X)=p_{1}\left(x_{1}-\mu\right)^{2}+p_{2}\left(x_{2}-\mu\right)^{2}+\cdots+p_{n}\left(x_{n}-\mu\right)^{2}
$$

Note: We square each since some may be negative.
Standard Deviation measures the same thing as the variance. The standard deviation of a Random Variable X is

$$
\sigma=\sqrt{\operatorname{Var}(X)}=\sqrt{p_{1}\left(x_{1}-\mu\right)^{2}+p_{2}\left(x_{2}-\mu\right)^{2}+\cdots+p_{n}\left(x_{n}-\mu\right)^{2}}
$$

Example 1: Compute the mean, variance and standard deviation of the random variable X with probability distribution as follows:

$\operatorname{var}(x)=p_{1}\left(x_{1}-\mu\right)^{2}+p_{2}\left(x_{2}-\mu\right)^{2}+p_{3}\left(x_{3}-\mu\right)^{2}$
$\begin{aligned} &=0.4(-3-0.9)^{2}+0.3(2-0.9)^{2}+0.3(5-0.9)^{2} \\ &=11.49\end{aligned}$
Stand. Deva. $=\sigma=\sqrt{\operatorname{var}(x)}=\sqrt{11.49}$

$$
=3.3857
$$

Math 1313 Section 7.3
Example 2: An investor is considering two business ventures. The anticipated returns (in thousands of dollars) of each venture are described by the following probability distributions:

a. Compute the mean and variance for each venture.

$$
\begin{aligned}
& E\left(x_{1}\right)=x_{1} p_{1}+x_{2} p_{2}+x_{3} p_{3}=-5(0.2)+30(0.6)+60(0.2)=29=\mu_{1} \\
& \operatorname{Var}\left(x_{1}\right)=p_{1}\left(x_{1}-\mu\right)^{2}+p_{2}\left(x_{2}-\mu\right)^{2}+p_{3}\left(x_{3}-\mu\right)^{2} \\
& =0.2(-5-29)^{2}+0.6(30-29)^{2}+0.2(60-29)^{2}=424 \\
& E\left(x_{2}\right)=1.5(0.15)+50(0.75)+100(0.10)=47.725 \\
& \operatorname{Vur}(x)=0.15(1.5-47.725)^{2}+0.75(50-47.725)^{2}+ \\
& 0.10(100-47.725)^{2}=597.6619
\end{aligned}
$$

b. Which investment would provide the investor with the higher expected return (the greater mean)?

$$
\begin{array}{ll}
\mu_{1}=29 & \text { Venture } 2 \\
\mu_{2}=47,725 &
\end{array}
$$

c. Which investment would the element of risk be less (that is, which probability distribution has the smaller variance)?

$$
\begin{array}{ll}
\operatorname{Var}\left(x_{1}\right)=424 \\
\operatorname{Var}\left(x_{2}\right) & =5976619
\end{array} \quad \text { Ventura } 1
$$

Popper 5: The probability distribution of a random variable X is given below. Given the mean $\mu=4$

$$
\begin{array}{lllll}
\mathrm{X} & 1 & 3 & 5 & 7 \\
P(X=x) & 0.15 & 0.35 & 0.35 & 0.15
\end{array}
$$

Find the standard deviation.
a. $\quad 3.400$
b. 10.830
c. 1.844
d. 3.291

