

2. The graph of f(x) is shown below.

3. Give the average value of $f(x) = x^2 - 2x + 4$ on the interval [-1,2], and verify the conclusion of the mean value theorem for integrals for this function on this interval.

A verage Value =
$$\frac{1}{2-1} \int (x^2 - 2x + 4) dx$$

= $\frac{1}{3} \left(\frac{1}{3} x^2 - x^2 + 4x \right) \int (x^2 - \frac{1}{3} x + 4x) dx$
= $\frac{1}{3} \left(\frac{1}{3} x^2 - \frac{1}{3} x^2 + 4x \right) \int (x^2 - \frac{1}{3} x + 4x) dx$

Note that
$$f(x)$$
 is a polynomial.
 $f(x)$ is continuous on $[-1,2]$.
We verify the conclusion of the
MNThm for integrals by solving
 $f(c) = 4$ areage value
for a value c in $(-1,2)$.
 $c^2 - 2c + 4 = 4$
 $c^2 - 2c = 0$
 $c(c-2) = 0$
 $c(c-2) = 0$
 $c = 0$ is $n(-1,2)$ and verifies the
conclusion of the MNThm for integrals

.

4. Sketch the region bounded between the graphs of $f(x) = 3 - x^2$ and g(x) = 2x. Then find the area of the region.

5. Find the **area** bounded by the graph of $f(x) = x^3 - x^2$ and the *x*-axis on the interval [0,2].

6. Sketch the region bounded by the curves x + y = 3 and $x = y^2 + y$. Then give a formula for the area of the region involving integral(s) in x. Repeat the process with integral(s) in y. Finally, find the area of the region.

$$\begin{aligned}
 Integrals & m & y; \\
 Area &= \int_{-3}^{1} ((3-y) - (y^{2}+y)) dy \\
 &= -3 \\
 &= \int_{-3}^{1} ((3-2y) - (y^{2}+y)) dy \\
 &= (3-2y) - (y^{2}-y^{2}) dy \\
 &= (3y - y^{2} - (y^{2})) dy \\
 &= (3y - y^{2} - (y^{2} - (y^{2})) dy \\
 &= (3y - y^{2} - (y^{2} - (y^{2})) dy \\
 &= (3y - y^{2} - (y^{2} - (y^{$$

7. Sketch the region bounded between f(x) = 2x + 3 and $g(x) = x^2$. Rotate this region around the *y*-axis to generate a solid, and then find the volume of the solid.

8. Sketch the region in the first quadrant bounded between f(x) = 2x + 3 and $g(x) = x^2$. Rotate this region around the *y*-axis to generate a solid, and then find the volume of the solid.

See problem 7. The result is the same.

9. Revolve the region bounded by the line y = 4 and the graph of $f(x) = x^2$ about the x-axis to generate a solid. Find the volume.

10. The region bounded between the graphs of $f(x) = x^3 - x^2$ and g(x) = 2x on the interval [0,2] is rotated around the *y*-axis to generate a solid. Find the volume.

$$f(x) = g(x) \iff x^{3} - x^{2} - zx = 0$$

$$x(x^{2} - x - 2) = 0$$

$$x(x-2)(x+1) = 0$$

$$x=0, x=2, x=1$$

Rotating the vertical line around the y axis generates a cylindrical shell with

and