1. Give the average value of f(x)=cos(2x) on the interval {—Z,E} .
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2. The graph of f(X) is shown below.
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[ a. Give the area of the region bounded between the graph of f(x) and the x-axis on the

interval [-2, 3].
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3. Give the average value of f(X) = X° —2X+4 on the interval [-1,2], and verify the conclusion of

the mean value theorem for integrals for this function on this interval.
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4. Sketch the region bounded between the graphs of f(x)=3- x* and g(x) = 2x. Then find the
area of the region.
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5. Find the area bounded by the graph of f(x) = x® —x? and the x-axis on the interval [0,2].
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6. Sketch the region bounded by the curves X+ Yy =3 and x = y2 + Yy . Then give a formula for the

area of the region involving integral(s) in x. Repeat the process with integral(s) in y. Finally,
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find the area of the region.
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7. Sketch the region bounded between f(x)=2x+3 and g(x) = x*. Rotate this region around

the y-axis to generate a solid, and then find the volume of the solid.

91 Note: From symmetry, the solid generated when this
region is rotated around the y axis is the same as the

8 solid generated when the region in the first quadrant is
rotated around the y axis.
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AN Consequently, we neglect the RED region.
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5] The vertical line drawn on the left rotates around the
y-axis to form a cylindrical shell, as shown below.

44

2]
"“““"—\
1

'2.):4‘3‘”‘1

\
.
~

0

=5 2 1 1 2 3

-'.3 = 0 - =~

2 T 2x
ZR¥D = v L= y
> L+ (x-3)=F
= () .
= == o

Volume = grﬂ" * (2% ¥ 3= k7Y A




8. Sketch the region in the first quadrant bounded between f(x)=2x+3 and g(X) = x°.

Rotate this region around the y-axis to generate a solid, and then find the volume of the solid.
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9. Revolve the region bounded by the line y = 4 and the graph of f (x) = x* about the x-axis to

generate a solid. Find the volume.
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10. The region bounded between the graphs of f(x) = x* —x? and g(X) = 2x on the interval [0,2]

is rotated around the y-axis to generate a solid. Find the volume.
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Rotating the vertical line around the y axis generates a cylindrical shell
with

height A S (‘7“5*’7‘15 = 2a—xEexT

and radius P
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